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1 Introduction

This document provides the way to perform meta-analysis of RNA-seq data using metaSeq

package. Meta-analysis is a attempt to integrate multiple data in di�erent studies and
retrieve much reliable and reproducible result. In transcriptome study, the goal of analysis
may be di�erentially expressed genes (DEGs). In our package, the probability of one-sided
NOISeq [1] is applied in each study. This is because the numbers of reads are often di�erent
depending on its study and NOISeq is robust method against its di�erence (see the next
section). By meta-analysis, genes which di�erentially expressed in many studies are detected
as DEGs.

2 RSE: Read-Size E�ect

In many cases, the number of reads are depend on study. For example, here we prepared
multiple RNA-Seq count data designed as Breast Cancer cell lines vs Normal cells measured
in 4 di�erent studies (this data is also accessible by data(BreastCancer)).

ID in this vignette Accession (SRA / ERA Accession) Experimental Design

StudyA SRP008746 Breast Cancer (n=3) vs Normal (n=2)

StudyB SRP006726 Breast Cancer (n=1) vs Normal (n=1)

StudyC SRP005601 Breast Cancer (n=7) vs Normal (n=1)

StudyD ERP000992 Breast Cancer (n=2) vs Normal (n=1)

Figure 1: Di�erence of the number of reads
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As shown in the �gure 1, the number of reads in StudyA, B, C, and D are relatively
di�erent. Generally, statistical test is in�uenced by the number of reads; the more the
number of reads is large, the more the statistical tests are tend to be signi�cant (see the
next section). Therefore, in meta-analysis of RNA-seq data, data may be su�ered from this
bias. Here we call this bias as RSE (Read Size E�ect).

3 Robustness against RSE

In the point of view of robustness against RSE, we evaluated �ve widely used method in
RNA-seq; DESeq [2], edgeR [3], baySeq [4], and NOISeq [1]. Here we used only StudyA data.
All counts in the matrix are repeatedly down-sampled in accordance with distributions of
binomial (the probability equals 0.5). 1 (original), 1/2, 1/4, 1/8, 1/16, and 1/32-fold data
are prepared as low read size situation. In each read size, four methods are conducted (�gure
2.A, this data is also accessible by data(StudyA) and data(pvals)), then we focussed on
how top500 genes of original data in order of signi�cance will change its members, in�uenced
by low read size (�gure 2.B).

Figure 2: A(left): RSE in each RNA-Seq method, B(right): Top 500 genes in order of
signi�cance

Ideal method will returns same result regardless of read size, because same data was used.
As shown in �gure 2, NOISeq is not almost a�ected by the number of reads and robustlly
detects same genes as DEGs. Therefore, we concluded that NOISeq is suitable method at
least in the point of view of meta-analysis. Note that probability of NOISeq is not equal to
p-value; it is the probability that a gene is di�erentially expressed [1]. Our package integrates
its probability by Fisher's method [5] or Stou�er's method (inverse normal method) [6]. In
regard to Stou�er's method, weighting by the number of replicates (sample size) is used.

3



4 Getting started

At �rst, install and load the metaSeq and snow .

> library("metaSeq")

> library("snow")

The RNA-seq expression data in breast cancer cell lines and normal cells is prepared.
The data is measured from 4 di�erent studies.The data is stored as a matrix (23368 rows ×
18 columns).

> data(BreastCancer)

We need to prepare two vectors. First vector is for indicating the experimental condition
(e.g., 1: Cancer, 2: Normal) and second one is for indicating the source of data (e.g., A:
StudyA, B: StudyB, C: StudyC, D: StudyD).

> flag1 <- c(1,1,1,0,0, 1,0, 1,1,1,1,1,1,1,0, 1,1,0)

> flag2 <- c("A","A","A","A","A", "B","B", "C","C","C","C","C","C","C","C", "D","D","D")

Then, we use meta.readData to create R object for meta.oneside.noiseq.

> cds <- meta.readData(data = BreastCancer, factor = flag1, studies = flag2)

Onesided-NOISeq is performed in each studies and each probabilities are summalized as
a member of list object.

> ## This is very time consuming step.

> # cl <- makeCluster(4, "SOCK")

> # result <- meta.oneside.noiseq(cds, k = 0.5, norm = "tmm", replicates = "biological",

> # factor = flag1, conditions = c(1, 0), studies = flag2, cl = cl)

> # stopCluster(cl)

>

> ## Please load pre-calculated result (Result.Meta)

> ## by data function instead of scripts above.

> data(Result.Meta)

> result <- Result.Meta

Fisher's method and Stou�er's method can be applied to the result ofmeta.oneside.noiseq.

> F <- Fisher.test(result)

> S <- Stouffer.test(result)

These outputs are summalized as list whose length is 3. First member is the probability
which means a gene is upper-regulated genes, and Second member is lower-regulated genes.
Weight in each study is also saved as its third member (weight is used only by Stou�er's
method).
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> head(F$Upper)

1/2-SBSRNA4 A1BG A1BG-AS1 A1CF A2LD1

0.3842542 0.5316118 0.5325544 NA 0.1358559

A2M

0.2252807

> head(F$Lower)

1/2-SBSRNA4 A1BG A1BG-AS1 A1CF A2LD1

0.8420357 0.6078896 0.4047202 NA 0.3661371

A2M

0.6197968

> F$Weight

Study 1 Study 2 Study 3 Study 4

5 2 8 3

> head(S$Upper)

1/2-SBSRNA4 A1BG A1BG-AS1 A1CF A2LD1

0.3709297 0.2663748 0.2711745 NA 0.2957139

A2M

0.2996707

> head(S$Lower)

1/2-SBSRNA4 A1BG A1BG-AS1 A1CF A2LD1

0.6290703 0.7336252 0.7288255 NA 0.7042861

A2M

0.7003293

> S$Weight

Study 1 Study 2 Study 3 Study 4

5 2 8 3
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Generally, by meta-analysis, detection power will improved and much genes are detected
as DEGs.

Method Study Number of DEGs

NOISeq A 86

NOISeq B 563

NOISeq C 99

NOISeq D 210

NOISeq A, B, C, D (not meta-analysis) 21

metaSeq (Fisher, Upper) A, B, C, D 407

metaSeq (Fisher, Lower) A, B, C, D 1483

metaSeq (Stou�er, Upper) A, B, C, D 116

metaSeq (Stou�er, Lower) A, B, C, D 2271
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5 Meta-analysis by non-NOISeq method

For some reason, we may want to use non-NOISeq method like DESeq , edgeR, or even cu�di�
[7]. We prepared other.oneside.noiseq as optional function for such methods. Returned
object can be directlly applied to Fisher.test and Stouffer.test.

We have to prepare at least 2 matrix �lled with p-value or probability. First matrix is
for upper-regulated genes between control group and treatment group. On the other hand,
second matrix is for lower-regulated genes. As optional parameter, weight in each study is
also avilable. Weight is need for Stou�er's method but not necessary for Fisher's method.

> ## Assume this matrix as one-sided p-values

> ## generated by non-NOISeq method (e.g., cuffdiff)

> upper <- matrix(runif(300), ncol=3, nrow=100)

> lower <- 1 - upper

> rownames(upper) <- paste0("Gene", 1:100)

> rownames(lower) <- paste0("Gene", 1:100)

> weight <- c(3,6,8)

Next, other.oneside.pvalues will return a list object for Fisher.test or Stouffer.test
by upper, lower, and weight.

> ## other.oneside.pvalues function return a matrix

> ## which can input Fisher.test or Stouffer.test

> result <- other.oneside.pvalues(upper, lower, weight)

result above can be applied to Fisher.test and Stouffer.test.

> F <- Fisher.test(result)

> str(F)

List of 3

$ Upper : Named num [1:100] 0.563 0.717 0.709 0.562 0.959 ...

..- attr(*, "names")= chr [1:100] "Gene1" "Gene2" "Gene3" "Gene4" ...

$ Lower : Named num [1:100] 0.686 0.459 0.242 0.678 0.151 ...

..- attr(*, "names")= chr [1:100] "Gene1" "Gene2" "Gene3" "Gene4" ...

$ Weight: Named num [1:3] 3 6 8

..- attr(*, "names")= chr [1:3] "Exp 1" "Exp 2" "Exp 3"

> head(F$Upper)

Gene1 Gene2 Gene3 Gene4 Gene5 Gene6

0.56259336 0.71687841 0.70880031 0.56174657 0.95864191 0.01489104

> head(F$Lower)

Gene1 Gene2 Gene3 Gene4 Gene5 Gene6

0.6855968 0.4586064 0.2419788 0.6783287 0.1507916 0.5821402
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> F$Weight

Exp 1 Exp 2 Exp 3

3 6 8

> S <- Stouffer.test(result)

> str(S)

List of 3

$ Upper : Named num [1:100] 0.486 0.732 0.543 0.455 0.878 ...

..- attr(*, "names")= chr [1:100] "Gene1" "Gene2" "Gene3" "Gene4" ...

$ Lower : Named num [1:100] 0.514 0.268 0.457 0.545 0.122 ...

..- attr(*, "names")= chr [1:100] "Gene1" "Gene2" "Gene3" "Gene4" ...

$ Weight: Named num [1:3] 3 6 8

..- attr(*, "names")= chr [1:3] "Exp 1" "Exp 2" "Exp 3"

> head(S$Upper)

Gene1 Gene2 Gene3 Gene4 Gene5 Gene6

0.4859471 0.7322225 0.5430494 0.4550850 0.8776494 0.3339013

> head(S$Lower)

Gene1 Gene2 Gene3 Gene4 Gene5 Gene6

0.5140529 0.2677775 0.4569506 0.5449150 0.1223506 0.6660987

> S$Weight

Exp 1 Exp 2 Exp 3

3 6 8
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6 Setup

This vignette was built on:

> sessionInfo()

R version 4.3.1 (2023-06-16)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 22.04.3 LTS

Matrix products: default

BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

time zone: America/New_York

tzcode source: system (glibc)

attached base packages:

[1] splines stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] metaSeq_1.42.0 Rcpp_1.0.11 snow_0.4-4

[4] NOISeq_2.46.0 Matrix_1.6-1.1 Biobase_2.62.0

[7] BiocGenerics_0.48.0

loaded via a namespace (and not attached):

[1] compiler_4.3.1 parallel_4.3.1 tools_4.3.1 grid_4.3.1

[5] lattice_0.22-5
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