
BadRegionFinder � an R/Bioconductor package for

identifying regions with bad coverage

Sarah Sandmann

October 24, 2023

Contents

1 Introduction 1

1.1 Loading the package . 2

2 Determining and classifying the coverage 3

2.1 Determine the coverage . 3
2.2 Determine the coverage quality . 4
2.3 Determine regions of interest . 6

3 Reporting the results 7

3.1 Summary variant (regions) . 7
3.2 Detailed variant . 9
3.3 Summary variant (genes) . 10

4 Visualizing the results 11

4.1 Summary variant (regions) . 11
4.2 Detailed variant . 12
4.3 Summary variant (genes) . 13

5 Additional functions 14

5.1 Determine quantiles . 14

6 Runtime 14

1 Introduction

In the use case of targeted sequencing, determining the coverage of the targeted regions is a crucial
step. A su�cient coverage of the target regions is essential. Otherwise, all subsequent experiments
might fail. Mutations might for example not be detected, because the corresponding regions are
hardly covered.

The reasons for observing bad coverage are diverse. Not enough material might have been
used for sequencing. Or a random error might have occurred during sequencing itself. Yet, these

1

problems do usually result in a continuously bad coverage of a single sample, resp. those samples
that were analyzed mutually. A di�erent type of problem results from genes or regions in the
genome, which are generally di�cult to sequence. These di�culties often result from a high GC-
content [4]. Another problem might be primers, which were not designed optimally. If the two
primers of an amplicon are located too far away from each other, a decrease in coverage is expected
to be observed for all samples concerning parts of this amplicon.

Plenty of programs exist for performing a coverage analysis. Programs like BEDtools [3] may
quickly calculate the coverage of any given bam �le. Thereby, the coverage of any de�ned windows or
per base may be calculated. Similarly, the R package 'bamsignals' [2] is able to extract information
on the coverage of every position of interest from a given bam �le.

When designing a targeted sequencing experiment and it comes to identifying regions, which
show a generally bad coverage, it is necessary to combine the coverage of many samples. It appears
useful to have a tool, that automatically combines the coverage information of di�erent samples
and provides di�erent possibilities for analysis.

BadRegionFinder is a package that allows for a coverage analysis of various samples at a time.
The user is able to de�ne individual thresholds that divide the coverage into three categories: bad,
acceptable and good coverage. The whole genome may be considered as well as a set of target
regions. Thereby, BadRegionFinder does not only provide a possibility for identifying regions with
a bad coverage, but also regions with a high coverage o� target indicating that a pair of the designed
primers might not be mapping uniquely or that there might be problems in the alignment.

For the �nal analysis of the coverage quality di�erent options are available:

� summary variant, focusing on regions

� detailed variant (basewise results)

� summary variant, focusing on genes

1.1 Loading the package

The package can be downloaded and installed with

> BiocManager::install("BadRegionFinder")

After installation, the package can be loaded into R by typing

> library(BadRegionFinder)

into the R console.
BadRegionFinder requires the R-packages VariantAnnotation, Rsamtools, biomaRt, Genomi-

cRanges and S4Vectors, as well as functions from the R-packages utils, stats, grDevices and graph-

ics. All of them are loaded automatically when using BadRegionFinder. Furthermore the package
BSgenome.Hsapiens.UCSC.hg19 is suggested.

2

2 Determining and classifying the coverage

Prior to reporting and visualizing information on the coverage over all samples, the coverage of
every sample at every position of interest has to be determined, the information has to be combined
and classes concerning the coverage quality have to be assigned. To do so, di�erent functions are
available.

2.1 Determine the coverage

If the user is interested in investigating the coverage on and o� target considering the whole genome,
it is recommended to use the function determineCoverage with TRonly = FALSE. The function
scans the whole genome and wherever a base is covered by at least one read or an originally
targeted base is detected, detailed information concerning this position is written out.

If the user is interested in investigating the coverage on target only, it is recommended to use
the function determineCoverage with TRonly = TRUE. Again, the whole genome gets scanned, but
only wherever a targeted base is registered, detailed information concerning this position is written
out.

For the correct functioning of determineCoverage, various input objects are necessary:

� The names of the samples to be analyzed have to be provided by a data frame object. There
has to be one sample name per line without the ".bam" su�x.

Exemplary data frame object samples:

> sample_file <- system.file("extdata", "SampleNames2.txt", package = "BadRegionFinder")

> samples <- read.table(sample_file)

> samples

V1

1 Test2_454

2 Test2_ion

� The bam- and the corresponding bai �les of the samples to be analyzed have to be provided
in a folder. The names of the �les have to match the names provided by the sample names
�le. Alternatively, a bamFileList may be de�ned.

� The target regions have to be provided by a data frame- or a GRanges object. If a data frame
object is provided, the name of the chromosome (without "chr") has to be de�ned in the �rst
column, the start position of the target region has to be de�ned in the second column and
the end position of the region has to be de�ned in the third column.

Exemplary data frame object targetRegions:

> target_regions <- system.file("extdata", "targetRegions2.bed", package = "BadRegionFinder")

> targetRegions <- read.table(target_regions, header = FALSE, stringsAsFactors = FALSE)

> targetRegions

3

V1 V2 V3

1 2 198266410 198267032

2 2 198267198 198267820

3 17 74732937 74733301

� The folder where the output shall be saved may be de�ned as well. For every chromosome
that is de�ned in the genome, a �le is written out: "Summary_chr<chromosomename>.txt".
Apart from information on the coverage, this �le also contains information on whether the
analyzed bases are part of the target region (targetBases = 1) or not (targetBases = 0). If only
an empty string is provided, no �les are written out. The results are stored in a GRangesList
object.

Exemplary results for chromosome 2 (TRonly = FALSE):

> bam_input <- system.file("extdata", package = "BadRegionFinder")

> coverage_summary <- determineCoverage(samples, bam_input, targetRegions, "", TRonly = FALSE)

> coverage_summary[[2]]

GRanges object with 1611 ranges and 3 metadata columns:

seqnames ranges strand | Test2_454 Test2_ion targetBases

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric>

[1] 2 1-198266311 * | 0 0 0

[2] 2 198266312 * | 48 128 0

[3] 2 198266313 * | 48 128 0

[4] 2 198266314 * | 48 128 0

[5] 2 198266315 * | 48 128 0

...

[1607] 2 198267917 * | 1 119 0

[1608] 2 198267918 * | 1 119 0

[1609] 2 198267919 * | 1 119 0

[1610] 2 198267920 * | 1 119 0

[1611] 2 198267921-243199373 * | 0 0 0

seqinfo: 25 sequences from an unspecified genome; no seqlengths

� Furthermore, it has to be de�ned, whether the coverage concerning the whole genome shall
be reported (TRonly = FALSE), or only the coverage concerning the target regions (TRonly
= TRUE).

2.2 Determine the coverage quality

Apart from determining the coverage of every sample at all the positions of interest, it is essential to
combine this information and to classify the coverage quality at every position. This is done by the
function determineCoverageQuality. The function analyzes every position in the return value of
determineCoverage (with TRonly = FALSE or TRonly = TRUE) and determines the corresponding
coverage quality.

There exist six di�erent categories of coverage quality: bad coverage o� target, bad coverage
on target, acceptable coverage o� target, acceptable coverage on target, good coverage o� target,

4

good coverage on target. These categories are numerically coded and user-de�ned. To de�ne the
thresholds, four essential parameters that have to be set:

� threshold1: the �rst coverage threshold

� percentage1: the �rst percentage threshold

� threshold2: the second coverage threshold

� percentage2: the second percentage threshold

To categorize the coverage quality, the coverage of each sample is �rst of all categorized according
to threshold1 and threshold2 into three di�erent categories:

� bad coverage: less than threshold1 reads

� acceptable coverage: at least threshold1, but less than threshold2 reads

� good coverage: at least threshold2 reads

Subsequently this information gets combined with the de�ned precentages to obtain a numer-
ically coded quality value for each region saved in the previously created GRangesList object
coverage_summary:

� 0: o� target; not even percentage1 percent of all samples have a good or acceptable coverage
(bad region)

� 1: on target; not even percentage1 percent of all samples have a good or acceptable coverage
(bad region)

� 2: o� target; at least percentage1 percent of all samples have a good or acceptable coverage,
but less than percentage2 percent of all samples have a good coverage (acceptable region)

� 3: on target; at least percentage1 percent of all samples have a good or acceptable coverage,
but less than percentage2 percent of all samples have a good coverage (acceptable region)

� 4: o� target; at least percentage2 percent of all samples have a good coverage (good region)

� 5: on target; at least percentage2 percent of all samples have a good coverage (good region)

In addition to threshold1, percentage1, threshold2 and percentage2 the GRangesList ob-
ject, that is the return value of determineCoverage, is necessary for the correct functioning of
determineCoverageQuality.

As the output is still in a very raw version, it is not directly saved by the function, but returned
as a list object.

Exemplary output object coverage_indicators (chromosome 2):

> threshold1 <- 20

> threshold2 <- 100

> percentage1 <- 0.80

> percentage2 <- 0.90

> coverage_indicators <- determineCoverageQuality(threshold1, threshold2, percentage1,

+ percentage2, coverage_summary)

> coverage_indicators[[2]]

5

GRanges object with 1611 ranges and 4 metadata columns:

seqnames ranges strand | Test2_454 Test2_ion targetBases indicator

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <numeric>

[1] 2 1-198266311 * | 0 0 0 0

[2] 2 198266312 * | 48 128 0 2

[3] 2 198266313 * | 48 128 0 2

[4] 2 198266314 * | 48 128 0 2

[5] 2 198266315 * | 48 128 0 2

...

[1607] 2 198267917 * | 1 119 0 0

[1608] 2 198267918 * | 1 119 0 0

[1609] 2 198267919 * | 1 119 0 0

[1610] 2 198267920 * | 1 119 0 0

[1611] 2 198267921-243199373 * | 0 0 0 0

seqinfo: 25 sequences from an unspecified genome; no seqlengths

2.3 Determine regions of interest

If the user is not interested in an analysis of the whole genome or of the whole target region, but
just in a selction of regions (on and/or o� target), these regions may be selected by the help of the
function determineRegionsOfInterest. For every base de�ned to be in a region of interest, the
previously determined coverage information is written out. This information always includes the
coverage of each sample and it may include the assigned class of coverage quality - depending on
the input object.

For the correct functioning of determineRegionsOfInterest two input objects are necessary:

� The regions of interest have to be provided by a data frame- or GRanges object. In case of a
data frame object, the name of the chromosome (without "chr") has to be de�ned in the �rst
column, the start position of the region of interest has to be de�ned in the second column
and the end position of the region of interest has to be de�ned in the third column.

Exemplary data frame object regionsOfInterest :

> regionsOfInterest<-data.frame(chr = c(2,2,17),

+ start = c(198266420,198267200,74732940),

+ end = c(198267032,198267800,74733301))

> regionsOfInterest

chr start end

1 2 198266420 198267032

2 2 198267200 198267800

3 17 74732940 74733301

� The input, which is the return value of determineCoverageQuality or determineCoverage
(with TRonly = FALSE or TRonly = TRUE) (or determineRegionsOfInterest), has to be
provided by a list object. Every component of the list considers one chromosome.

6

Exemplary output object coverage_indicators_2 (chromosome 2):

> coverage_indicators_2 <- determineRegionsOfInterest(regionsOfInterest, coverage_indicators)

> coverage_indicators_2[[2]]

GRanges object with 1214 ranges and 4 metadata columns:

seqnames ranges strand | Test2_454 Test2_ion targetBases indicator

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <numeric>

[1] 2 198266420 * | 85 179 1 3

[2] 2 198266421 * | 85 179 1 3

[3] 2 198266422 * | 85 179 1 3

[4] 2 198266423 * | 85 179 1 3

[5] 2 198266424 * | 85 179 1 3

...

[1210] 2 198267796 * | 526 304 1 5

[1211] 2 198267797 * | 526 304 1 5

[1212] 2 198267798 * | 526 303 1 5

[1213] 2 198267799 * | 526 301 1 5

[1214] 2 198267800 * | 526 301 1 5

seqinfo: 1 sequence from an unspecified genome; no seqlengths

It is not recommended to use determineCoverage with TRonly=TRUE, but to select regions o�
target using determineRegionsOfInterest. In this case, no coverage could be registered for all
bases o� target, as this information was not saved during the step of determineCoverage.

If regionsOfInterest is identical compared to targetRegions and the function determineCoverage
with TRonly=TRUE was applied in the �rst case, the selection of regions that is returned is not
changed at all.

3 Reporting the results

The function determineCoverage already produces some output �les. Yet, these �les just contain
raw information on the coverage of every sample at every position in the whole genome, resp. the
target region. Information on the coverage quality is not yet included in these �les. To report this
information, three di�erent variants are available.

3.1 Summary variant (regions)

If the user likes to gain an overview of the coverage quality, it is recommended to use the function
reportBadRegionsSummary to create a summary report considering all regions of interest, their
coverage quality and the corresponding gene (including gene name and geneID).

The function scans every position in the input object. Wherever subsequent bases feature the
same coverage quality, the region gets summed up. Although it is not directly reported whether
a region contains on or o� target bases, this information can be gained from the coverage quality:
all bases o� target feature an even number characterizing the coverage quality; all bases on target
feature an uneven number characterizing the coverage quality.

7

For every summed up region the gene that is most likely to be targeted by the original experiment
gets reported using biomaRt. If no gene can be found, "NA" is saved for the corresponding region.
If not all bases in the summed up region cover a gene, the gene gets reported for the whole region
nonetheless.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

� Values de�ning the classes of coverage (threshold1, percentage1, threshold2, percentage2;
for more details on the classes see section 2.2).

� The input, which is the return value of determineCoverageQuality or determineRegionsOfInterest,
has to be provided by a list object. Every component of the list considers one chromosome.

� If the information concerning the genes is not supposed to result from the human genome
(hg19), a mart has to be provided (compare R/Bioconductor package biomaRt [1]). Otherwise,
the human genome (hg19) is used by default if an empty string is provided.

Exemplary mart (default mart):

> library(biomaRt)

> mart = useMart(biomart="ENSEMBL_MART_ENSEMBL",host="grch37.ensembl.org",

+ path="/biomart/martservice",dataset="hsapiens_gene_ensembl")

> mart

Object of class 'Mart':

Using the ENSEMBL_MART_ENSEMBL BioMart database

Using the hsapiens_gene_ensembl dataset

� The folder where the output shall be saved may be de�ned. A single a �le is written out:
"BadCoverageSummarythreshold1;percentage1;threshold2;percentage2.txt". If no out-
put shall be written out, an empty string may be passed.

Exemplary return value:

> badCoverageSummary <- reportBadRegionsSummary(threshold1, threshold2, percentage1,

+ percentage2, coverage_indicators_2, mart, "")

> badCoverageSummary

GRanges object with 7 ranges and 3 metadata columns:

seqnames ranges strand | QualityMarker Gene GeneID

<Rle> <IRanges> <Rle> | <numeric> <character> <character>

[1] 2 198266420-198266611 * | 3 SF3B1 ENSG00000115524

[2] 2 198266612-198266725 * | 5 SF3B1 ENSG00000115524

[3] 2 198266726-198266811 * | 3 SF3B1 ENSG00000115524

[4] 2 198266812-198267032 * | 1 SF3B1 ENSG00000115524

[5] 2 198267200-198267256 * | 3 SF3B1 ENSG00000115524

[6] 2 198267257-198267800 * | 5 SF3B1 ENSG00000115524

[7] 17 74732940-74733301 * | 1 SRSF2 ENSG00000161547

seqinfo: 2 sequences from an unspecified genome; no seqlengths

The output �le may be visualized using the function plotSummary (see section 4.1).

8

3.2 Detailed variant

If the user likes to receive more detailed information on the coverage quality, it is recommended
to use the function reportBadRegionsDetailed to create a detailed report considering all regions
of interest (basewise), the coverage of each sample at the corresponding positions, the indicator
whether the bases were originally targeted, their coverage quality and the corresponding gene (name
and geneID).

Di�erent from the summed-up variant reportBadRegionsSummary, information on every single
base of interest gets reported (except for completely uncovered and untargeted regions, which are
excluded). For every base its position, the coverage of each sample, information on whether this
base was originally targeted (value 1) or not (value 0), the coverage quality and the most likely
gene (name and geneID) that was targeted by the original experiment get reported. Information
on the gene names and the geneIDs result from biomaRt [1]. If no gene can be found at a position,
"NA" is reported for the corresponding base.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

� Values de�ning the classes of coverage (threshold1, percentage1, threshold2, percentage2;
for more details on the classes see section 2.2).

� The input, which is the return value of determineCoverageQuality or determineRegionsOfInterest,
has to be provided by a list object. Every component of the list considers one chromosome.

� If the information concerning the genes is not supposed to result from the human genome
(hg19), a mart has to be provided (compare R/Bioconductor package biomaRt [1]). Otherwise,
the human genome (hg19) is used by default if an empty string is provided.

� The names of the samples that were analyzed (just used for naming the columns in the output
�le correctly) have to be provided by a data frame object. There has to be one sample name per
line. The folder where the output shall be saved may be de�ned. A single a �le is written out:
"BadCoverageChromosome<chromosomename>;threshold1;percentage1;threshold2;percentage2.txt".
If no output shall be written out, an empty string may be passed.

Exemplary return value for chromosome 2:

> coverage_indicators_temp <- reportBadRegionsDetailed(threshold1, threshold2, percentage1,

+ percentage2, coverage_indicators_2, "",

+ samples, "")

> coverage_indicators_temp[[2]]

GRanges object with 1214 ranges and 6 metadata columns:

seqnames ranges strand | Test2_454 Test2_ion targetBases QualityMarker Gene

<Rle> <IRanges> <Rle> | <numeric> <numeric> <numeric> <numeric> <character>

[1] 2 198266420 * | 85 179 1 3 SF3B1

[2] 2 198266421 * | 85 179 1 3 SF3B1

[3] 2 198266422 * | 85 179 1 3 SF3B1

[4] 2 198266423 * | 85 179 1 3 SF3B1

[5] 2 198266424 * | 85 179 1 3 SF3B1

...

[1210] 2 198267796 * | 526 304 1 5 SF3B1

9

[1211] 2 198267797 * | 526 304 1 5 SF3B1

[1212] 2 198267798 * | 526 303 1 5 SF3B1

[1213] 2 198267799 * | 526 301 1 5 SF3B1

[1214] 2 198267800 * | 526 301 1 5 SF3B1

GeneID

<character>

[1] ENSG00000115524

[2] ENSG00000115524

[3] ENSG00000115524

[4] ENSG00000115524

[5] ENSG00000115524

... ...

[1210] ENSG00000115524

[1211] ENSG00000115524

[1212] ENSG00000115524

[1213] ENSG00000115524

[1214] ENSG00000115524

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The output �le may be visualized using the function plotDetailed (see section 4.2).

3.3 Summary variant (genes)

If the user likes to gain an overview of the coverage quality of each targeted gene, use of the function
reportBadRegionsGenes is recommended. The function creates a summary report considering the
coverage quality on a genewise level considering all regions of interest.

reportBadRegionsGenes sums up all regions covering the same gene in the following way:
The number of bases falling into each quality category is summed up. Thereby, regions which
were orignially targeted may easily be separated from those which were not, as targeted regions
always feature an uneven number characterizing their coverage quality. If a region is broader than
the detected gene, but the quality category is the same for the whole region, the whole region is
assigned to the gene. If no gene is reported in the input �le, the coverage quality is summed up for
a gene named "NA". In a �nal step, the absolute number of bases is converted to a relative �gure
to allow for a better comparison between the di�erent genes.

For the correct functioning of reportBadRegionsGenes various input objects are necessary:

� Values de�ning the classes of coverage (threshold1, percentage1, threshold2, percentage2;
for more details on the classes see section 2.2).

� The input, which is the return value of reportBadRegionsSummary has to be provided (data
frame object).

� The folder where the output shall be saved may be de�ned. A single �le is written out:
"BadCoverageGenesthreshold1;percentage1;threshold2;percentage2.txt". If no output
shall be written out, an empty string may be passed.

Exemplary return value:

10

> badCoverageOverview <- reportBadRegionsGenes(threshold1, threshold2, percentage1, percentage2,

+ badCoverageSummary, "")

> badCoverageOverview

Gene GeneID BadRegion_offTarget BadRegion_onTarget AcceptableRegion_offTarget

1 SF3B1 ENSG00000115524 0 0.1820428 0

2 SRSF2 ENSG00000161547 0 1.0000000 0

AcceptableRegion_onTarget GoodRegions_offTarget GoodRegions_onTarget

1 0.2759473 0 0.5420099

2 0.0000000 0 0.0000000

The output �le may be visualized using the function plotSummaryGenes (see section 4.3).

4 Visualizing the results

Apart from creating various textual reports, summing up the results of the coverage analysis, there
exist functions to automatically visualize each type of report.

4.1 Summary variant (regions)

If the user likes to visualize the output of reportBadRegionsSummary, it is recommended to use
the function plotSummary. A line graph is returned, visualizing the number of bases that fall into
each category of coverage quality. Furthermore, information on the genes located in these regions
is included:

On the y axis the coverage quality is coded. The di�erent categories are color coded as well as
height coded. As numbers from 0 to 5 were previously assigned to the di�erent categories, thick
lines are now drawn at the height of the category. Furthermore, The categories are color coded in
the following way: red - bad region on target; yellow - acceptable region on target; green - good
region on target; black - bad region o� target; dark gray - acceptable region o� target; light gray -
good region o� target.

On the x axis the detected genes are printed. Wherever a new region covering a new gene is
registered, a dashed line is drawn.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

� Values de�ning the classes of coverage (threshold1, percentage1, threshold2, percentage2;
for more details on the classes see section 2.2).

� The input, which is the return value of reportBadRegionsSummary has to be provided (data
frame object).

� The folder where the output shall be saved may be de�ned as well. If it is de�ned, a png �le
is saved: "CoverageQuality_Summary.png". If only an empty string is de�ned, the plot is
printed on the screen.

> plotSummary(threshold1, threshold2, percentage1, percentage2, badCoverageSummary, "")

NULL

11

0
1

2
3

4
5

6
Summarized Coverage Quality

Genes

C
ov

er
ag

e
Q

ua
lit

y

SF3B1 SRSF2

Bad Region on Target Region (<80% with coverage >=20x)
Acceptable Region on Target Region (<90% with coverage >100x, but >=80% with coverage >=20x)
Good Region on Target Region (>=90% with coverage >=100x)

Bad Region off Target Region (<80% with coverage >=20x)
Acceptable Region off Target Region (<90% with coverage >100x, but >=80% with coverage >=20x)
Good Region off Target Region (>=90% with coverage >=100x)

4.2 Detailed variant

If the user likes to visualize the output of reportBadRegionsDetailed, it is recommended to use
the function plotDetailed. A line graph is returned, visualizing the median coverage over all
samples at every position of interest. Furthermore, information on whether the base were originally
targeted or not, on the coverage quality and the corresponding genes (name and geneID) that are
located at the positions is included in the plot.

On the y axis the median coverage over all samples is coded. Every position is considered
individually.

On the x axis the names of the detected genes are printed. Wherever a new region covering a
new gene is registered, a dashed line is drawn.

Yet, additionally to the mere median coverage, the corresponding coverage quality at each
position is also included in the plot. The di�erent categories of coverage quality are color coded in
the following way: red - bad region on target; yellow - acceptable region on target; green - good
region on target; black - bad region o� target; dark gray - acceptable region o� target; light gray -
good region o� target. Thereby, on- and o� target regions may easily be separated as well.

For the correct functioning of reportBadRegionsSummary various input objects are necessary:

� Values de�ning the classes of coverage (threshold1, percentage1, threshold2, percentage2;
for more details on the classes see section 2.2).

� The input, which is the return value of reportBadRegionsDetailed has to be provided (list
object).

� The folder where the output shall be saved may be de�ned as well. If it is de�ned, a png
�le is saved: "CoverageQuality_Details.png". If only an empty string is de�ned, the plot is
printed on the screen.

> plotDetailed(threshold1, threshold2, percentage1, percentage2, coverage_indicators_temp, "")

12

0
10

0
20

0
30

0
40

0
50

0
60

0
Detailed Coverage Quality

Genes

M
ed

ia
n

C
ov

er
ag

e

SF3B1 SRSF2

Bad Region on Target Region (<80% with coverage >20x)
Acceptable Region on Target Region (<90% with coverage >100x, but >=80% with coverage >=20x)
Good Region on Target Region (>=90% with coverage >=100x)

Bad Region off Target Region (<80% with coverage >20x)
Acceptable Region off Target Region (<90% with coverage >100x, but >=80% with coverage >=20x)
Good Region off Target Region (>=90% with coverage >=100x)

4.3 Summary variant (genes)

If the user likes to visualize the output of reportBadRegionsGenes, it is recommended to use the
function plotSummaryGenes. The function returns a barplot, visualizing the percentage of each
gene that falls into each category of coverage quality. The plot thereby serves to quickly distinguish
well from bad covered genes.

For every gene either one or two stacked bars are plotted. If a gene is covered, but it was not
originally targeted, a bar is plotted containing the following color code: black - bad region o� target;
dark gray - acceptable region o� target; light gray - good region o� target. If a gene was originally
targeted, a bar is plotted containing the following color code: red - bad region on target; yellow -
acceptable region on target; green - good region on target.

For the correct functioning of plotSummaryGenes, various input objects are necessary:

� Values de�ning the classes of coverage (threshold1, percentage1, threshold2, percentage2;
for more details on the classes see section 2.2).

� The input, which is the return value of reportBadRegionsGenes has to be provided (data
frame object).

� The folder where the output shall be saved may be de�ned as well. If it is de�ned, a png �le
is saved: "CoverageQuality_Summary.png". If only an empty string is de�ned, the plot is
printed on the screen.

> plotSummaryGenes(threshold1, threshold2, percentage1, percentage2, badCoverageOverview, "")

Summarized Coverage Quality

Genes

C
ov

er
ag

e
Q

ua
lit

y
(%

)

0
20

40
60

80
10

0
0

20
40

60
80

10
0

SF3B1 SRSF2

Bad Region on Target Region (<80% with coverage >20x)
Acceptable Region on Target Region (<90% with coverage >100x, but >=80% with coverage >=20x)
Good Region on Target Region (>=90% with coverage >=100x)

Bad Region off Target Region (<80% with coverage >20x)
Acceptable Region off Target Region (<90% with coverage >100x, but >=80% with coverage >=20x)
Good Region off Target Region (>=90% with coverage >=100x)

13

5 Additional functions

5.1 Determine quantiles

Regarding the coverage analysis of many samples in parallel, it may be useful not just to divide the
coverage into categories, but to determine certain quantiles over all samples concerning a prede�ned
region of interest. In this case the function determineQuantiles may be used.

Considering every chromosome and every position of interest individually, a set of user-de�ned
quantiles is calculated over all samples.

For the correct functioning of determineQuantiles, three input objects are necessary:

� The input, which is the return value of determineCoverage (with TRonly=FALSE or TRonly=TRUE)
or determineRegionsOfInterest (important: no information on the coverage quality) has
to be provided (list object).

� The quantiles that should be calculated have to be provided by a vector (e.g. c(0.25,0.5,0.75)).

� The folder where the output shall be saved may be de�ned. It is saved as: "Quantiles_chr<chromosomename>.txt".
If no output shall be written out, an empty string may be passed.

Exemplary return value (chromosome 2):

> quantiles <- c(0.5)

> coverage_summary2 <- determineQuantiles(coverage_summary, quantiles, "")

> coverage_summary2[[2]]

GRanges object with 1611 ranges and 2 metadata columns:

seqnames ranges strand | 0.5 OnTarget

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] 2 1-198266311 * | 0 0

[2] 2 198266312 * | 88 0

[3] 2 198266313 * | 88 0

[4] 2 198266314 * | 88 0

[5] 2 198266315 * | 88 0

...

[1607] 2 198267917 * | 60 0

[1608] 2 198267918 * | 60 0

[1609] 2 198267919 * | 60 0

[1610] 2 198267920 * | 60 0

[1611] 2 198267921-243199373 * | 0 0

seqinfo: 25 sequences from an unspecified genome; no seqlengths

6 Runtime

The runtime of BadRegionFinder is highly dependent on the number of reads of the samples to be
analyzed and the way they are scattered over the genome. Furthermore, the runtime is of course

14

also dependent on the number of samples, the length of the genome and the number of bases that
are in a region of interest.

The step which is most time consuming is certainly the application of the function determineCoverage.
In the above described examples two samples were analyzed. Alltogether, 1608 bases were located
on target (target region consisting of three distinct regions). However, what is much more impor-
tant, 2174 bases are covered. In the case of the function determineCoverage with TRonly=FALSE,
all covered bases are considered - on and o� target. An analysis of the two samples scanning the
whole human genome takes 2.207 seconds. If only the two chromosomes which are supposed to
be covered (according to the de�ned target regions) are de�ned to be considered by the function
(TRonly=TRUE), the analysis takes 1.93 seconds.

In case the analysis is supposed to consider the coverage in the target region only, usage of
the function determineCoverage with TRonly=TRUE is recommended. The di�erence in runtime is
small, when only few reads are located o� target, but it is considerably smaller when the bam �les
contain many scattered reads.

The runtime of all the other functions is usually considerably smaller. Only in case of the whole
genome being analyzed, a high number of scattered reads across the genome and many samples to
be analyzed, running these functions may take loner than a minute.

15

References

[1] S Durinck and W Huber. Interface to biomart databases.
http://bioconductor.org/packages/release/bioc/html/biomaRt.html.

[2] A Mammana and J Helmuth. Extract read count signals from bam �les.
http://www.bioconductor.org/packages/release/bioc/html/bamsignals.html.

[3] AR Quinlan and IM Hall. Bedtools: a �exible suite of utilities for comparing genomic features.
Bioinformatics, 26:841�842, 2010.

[4] MG Ross, C Russ, M Costello, A Hollinger, NJ Lennon, R Hegarty, C Nusbaum, and DB Ja�e.
Characterizing and measuring bias in sequence data. Genome Biology, 14(R51), 2013.

16

