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Abstract 

 

Understanding the mechanisms of action upon cellular perturbations is a fundamental endeavor in 

molecular and chemical biology. Differential expression analysis is a widely used approach for probing 

these mechanisms, yet it presents substantial interpretational challenges due to the presence of 

secondary effects and the complex impact of experimental treatments on gene expression. To address 

this, we introduce orthos, an approach that employs Deep Generative Networks to disentangle specific 

and non-specific effects of perturbations on gene expression. Trained on large collections of human 

and mouse gene expression contrasts compiled for this work, orthos isolates non-specific effects by 

learning the patterns of expression changes that manifest time and again in unrelated experiments. We 

demonstrate, in diverse experimental settings, that the specific component obtained from the 

decomposition is a more informative and robust experimental signature and a better proxy for the direct 

molecular effects of a treatment compared to the original contrast, thereby drastically enhancing the 

interpretability of differential expression results. In addition, orthos allows identification of experiments 

with similar specific effects, aiding in the mapping of new treatments to their mechanisms of action. In 

summary, orthos constitutes a novel strategy in the analysis and interpretation of gene expression data 

and offers a powerful platform for the study of genetic, physiological, and pharmacological treatments 

in basic and applied research.  
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Introduction  
 
 
 

The elucidation of targets and mechanisms of action of cellular interventions is key in biology with 

ramifications extending from basic research on cell regulatory networks, to the study of molecular 

causes of diseases and drug discovery1-3. Differential Gene Expression (DGE) analysis of 

transcriptomic alterations, an eminent, accessible readout of cellular response to perturbations, 

frequently serves as the principal, and occasionally the sole, strategy for probing these questions.  

 

Typically, the statistical pipelines employed for DGE analyses yield extensive lists of differentially 

expressed genes. These lists are difficult to interpret for a number of reasons. First, they are confounded 

by the multilayered repercussions of experimental treatments on mRNA production. For instance, 

modulating a transcription factor not only alters transcription of its direct targets but also triggers a 

cascade of up- or down-regulation of genes within the same or closely interlinked regulatory networks 

and pathways. These changes, in turn, can set off further responses downstream that ripple throughout 

the transcriptomic landscape potentially impacting core cellular processes1, 2. Second, genetic 

intervention technologies, treatment delivery agents and solvents often elicit a variety of unintended, 

systemic responses (such as immune, toxic, metabolic) that cannot be well-controlled for by the design 

of the study4-11. Finally, the contrasted RNA sequencing libraries can suffer from insidious technical 

systematic biases of varying degrees that impinge on DGE analyses and can be hard to detect and 

even harder to rectify12-15. The final experimentally measured gene expression changes are, therefore, 

a convolution of the specific effects and the non-specific secondary, lateral treatment and technical 

distortion effects. Crucially, these non-specific effects, by their nature, reverberate across DGE 

contrasts, spanning labs, projects, and treatments, opening a potential avenue for their detection and 

removal. To this end, we developed “orthos”, a Deep Generative Network (DGN) approach, that 

leverages information from a comprehensive collection of past experiments to effectively disentangle 

specific and non-specific effects on gene expression.   

 

DGNs have swiftly taken root in the field of transcriptomics, on account of their capacity to accurately 

learn complex data-generating distributions characterized by high dimensionality and intricate non-
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linear dependencies from noisy and biased samples. Applications run the gamut from dimensionality 

reduction, visualization, denoising and imputation to data harmonization, automated annotation, cell-

type composition studies, gene network inference and the development of interpretable biological 

models16-19. These networks are typically trained on gene expression profiles, are tailored with different 

types and degrees of inductive bias, contingent on the application, and take advantage of the learned 

distribution to perform the various inference tasks. Our approach, while grounded in similar foundations, 

signifies a conceptual shift. We posit that, when operating on extensive collections of diverse expression 

contrasts, the learned generative distribution encapsulates regularities of the input signal that might not 

be of primary biological interest, namely the non-specific perturbation effects. 

 

Starting from uniformly processed publicly available RNAseq experiments, we compiled large corpora 

of gene expression contrasts for human and mouse (~130K annotated, ~1M augmented) and trained 

organism-specific conditional variational models that learn and isolate non-specific effects that pervade 

across multiple treatments while accounting for tissue or cell line experimental context (Fig. 1a). We 

use these models to show, in multiple experimental settings, that the residual component derived from 

the removal of these effects is a highly discriminative and robust experimental signature that is more 

closely related to the direct molecular effects of the perturbation compared to the original contrast. We 

also show that, when utilized in the context of large screens, the models can be further fine-tuned to 

better account for salient within-study non-specific effects. 

 

Beyond affording a more nuanced understanding of the effects of experimental treatments on gene 

expression, orthos offers a platform for researchers to query the contrast database with arbitrary DGE 

profiles and identify experiments with similar specific effects, highlighting its utility in mapping 

pharmacological, physiological, or genetic treatments to mechanisms of action. 
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Results 
 

 
Training a model that deconvolves specific from non-specific experimental effects  

 

We set out to design and train models able to decompose the variance of a given DGE experiment into 

a non-specific and an experiment-specific component. Our model architecture is based on the 

conditional variational autoencoders (cVAEs) architecture, that has been used successfully for 

transcriptomic analyses16, 18. The models encode DGE contrasts (gene expression log-fold-changes), 

conditioned on the context of the performed experiment (overall gene expression profile), to a concise 

latent representation (zD) which retains their recurring and therefore compressible traits (see Methods). 

The compressed latent representation is then used to reconstruct a decoded version of the contrast. 

The decoded output subsumes gene variance that the model can account for because it has been 

repeatedly encountered during training. The residual obtained after removing the decoded contrast 

from the original one encompasses the gene variance that the model cannot account for, namely 

experiment-specific biological effects and experimental noise. 

 

For training purposes, we compiled organism-specific human and mouse DGE contrast corpora, 

calculated from the ARCHS4 database of uniformly processed publicly available RNAseq datasets20 

using a combination of metadata semantic and quantitative analysis to determine the proper assignment 

of contrasted conditions (see Methods). After post-filtering, the derived contrast database is comprised 

of 74,731 human and 58,532 mouse contrasts from 7,866 and 7,474 Gene Expression Omnibus (GEO) 

studies respectively, spanning a variety of technologies, sequencing platforms, cellular and tissue 

contexts (Fig. S1).  

 

Quantification of the contrast correlations between experimental series in the compiled contrast 

database confirmed that most contrasts display significant associations with unrelated experiments 

(Fig. 1b,c). Gene Set Enrichment Analysis (GSEA) of the compiled contrasts revealed that at least part 

of this redundancy can be attributed to commonly affected key cellular processes, with the same 

pathways being strongly (p-value < 1e-6) affected in large fractions (>5%) of the contrasts (Fig. 1d, 

Supplementary Fig. 2 and Supplementary table 1). The commonly affected gene sets mainly 
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correspond to core processes related to cell-cycle, immune response and metabolism, transcriptional, 

epigenetic and translational regulation as well as response to toxicity. These results are in line with our 

assertion that, irrespective of the specific intervention, transcriptional effects often converge to similar 

secondary effects that are largely non-informative with respect to the instigating mechanism of action.  

 

In order to enhance generalization performance, we pretrained the cVAEs on an augmented collection 

of synthesized contrasts (over 500,000 contrasts per organism) and subsequently fine-tuned them to 

the actual contrast database (see Methods). The final orthos models retain on average 40% of the input 

contrast variance in the decoded output (median pearson’s rho=0.68, Fig. 2b). As anticipated, the 

decoded contrasts show significant across-series correlations, whereas such correlations are mostly 

absent in the residuals, indicating that the model has effectively removed recurrent signals (Fig. 1b,c).   

 

 At the same time, analysis of independent biological replicates, extracted from the contrast database, 

demonstrates that reproducible biological variance is preserved in the residual fraction (Fig. 2c, 2d). On 

average ~30% of the residual variance (corresponding to ~27% of the input variance) is shared between 

replicates and corresponds to the non-random experiment-specific effects. The amount of residual 

reproducible variance is strongly correlated to the input reproducible variance indicating that it is largely 

a function of the experimental signal to noise ratio (Fig. 2c, 2d).  

 

GSEA analysis of the decoded and residual contrasts confirmed that the variance that corresponds to 

commonly affected cellular processes winds-up almost exclusively in the decoded fraction while it has 

been expunged from the residual fraction (Fig. 1d, Fig Sx). 

 

Overall, these results demonstrate that orthos efficiently deconvolves DGE signals to a decoded fraction 

that encompasses recurrent, predominantly non-specific effects and a residual fraction comprised 

partially of reproducible specific biological effects and partially of experimental noise.  
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The residual signal is a more informative experimental signature and a better proxy for  specific 

treatment effects compared to the raw contrast  

 

We then sought to systematically assess the input and orthos-decomposed contrasts in terms of their 

specificity with respect to the applied treatment. We searched the contrast database for pairs of 

matching experiments, originating from different studies, that modulate the same gene targets either by 

gene inactivation or by overexpression. We calculated the pairwise similarity of those same-target, 

same-modulation-direction experiments when using their input or decomposed contrasts. We note that 

each experiment of a matched pair is typically performed in a different cell context and often using a 

different gene modulation technology (e.g. CRISPR vs RNAi for inactivation or different vectors for 

overexpression). This experimental variability adds a layer of complexity as it can introduce distinct 

secondary effects that can confound comparisons. We evaluated the computed pairwise similarity 

values of matching experiments for each contrast type relative to a corresponding background of 

random across-study experiment pairs. We find that the residual fraction is consistently more 

informative than the input contrast for identifying treatments that modulate the same molecular targets 

(Fig. 3a, 3b left panels). Conversely, the decoded fraction offers invariably lower separability compared 

to the input contrast for same-target experiment identification (Fig. 3a, 3b right panels).  

 

To further probe the capacity of the input and decomposed contrasts to delineate treatments we turned 

to a high-throughput single-cell chemical screen that evaluated the transcriptomic response to hundreds 

of compounds at different doses and in different cancer cell lines21. We assessed the pairwise similarity 

of the DGE profiles of treatments, in pseudobulks, in two different cancer cell line contexts. Consistent 

with the results presented in the original study, we see clustering of the DGE profiles with respect to the 

molecular pathway targeted by the compound (Fig 3c, Input). At the same time, we observe extensive 

similarity in the effects of different compounds both within and across the groupings of targeted 

pathways. This suggests widespread overlaps in the secondary effects of distinct drugs, which is in line 

with the observation of the study authors that genes related to cell proliferation and cell-cycle arrest are 

ubiquitously affected across the screen.  As a result, the identifiability of individual compounds solely 

based on their transcriptomic effects is poor. This is evidenced in our comparison of matching 

treatments across the two cell line contexts, where pairwise similarity of the corresponding DGE profiles 

is in many cases close to background levels (Fig. 3c, Fig. 3d). As anticipated, when using the decoded 
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fractions of the DGE profiles for pairwise comparisons, our ability to identify matching compound 

treatments across contexts is even more limited (Fig. 3c, Decoded, Fig. Sx). Importantly, compound 

identifiability is considerably improved in the residual fraction comparisons (Fig. 3c, Fig. 3d), 

emphasizing once more that the residual contrast constitutes a more distinctive probe for treatment-

specific effects.      

 

We further took advantage of the same study to assess the potential advantage conferred by fine-tuning 

the models to better capture pervasive unspecific effects present in large screens. The DGE profiles of 

the study are derived from single-cell transcriptomic libraries that feature particular technical biases. 

Crucially, all single-cell studies were excluded from the original contrast database and model training. 

In addition, as noted earlier, the study screen is afflicted with recurrent secondary biological effects 

specifically related to cell-cycle arrest and proliferation. Therefore, although the original model was 

clearly able to generalize, subsuming in the decoded contrasts a considerable portion of the input 

variance [[Fig. Sx]], we expected a boost in this portion after fine-tuning. We fine-tuned the human 

model using a select subset of the study DGE contrasts and a low learning rate / small number of 

epochs policy (see Methods). As anticipated, the fine-tuned (FT) model captures a higher proportion of 

variance of the input DGE profiles in the decoded fraction (Fig. Sx). More importantly, compound 

identifiability across contexts is improved with the FT model residual fraction (Fig. 3c, Fig. 3d), indicating 

that this increase did not come at the expense of expunging compound-specific effects from the residual 

fraction. We conclude that contrast decomposition can benefit from model fine-tuning, which increases 

the amount of nuisance variance captured in the decoded fraction and results in better deconvolution 

of treatment specific and non-specific effects. We note, however, that appropriate selection of the 

training policy and examples presented during fine-tuning can be critical in this respect (see Methods).  

 

Together these results affirm that the residual contrast is a highly specific experimental signature, 

characteristic of the treatment and robust with respect to cellular context and secondary effects. As 

such, we postulate that it constitutes a better read-out for direct treatment effects and the underlying 

mechanisms of action.   
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Contrast decomposition of time-series experiments with orthos recapitulates the dynamics of 

direct and secondary treatment effects. 

 

In the temporal evolution of experimental treatments, direct effects manifest first and are the earliest to 

be reflected in transcriptomic read-outs. Secondary effects appear with a delay and will typically become 

more prominent over time as they propagate to a broader range of cellular processes. Eventually, the 

cells will either reach a new steady-state or, in the case of transient treatment effects, they will revert to 

their original state. To test if orthos is able to trace these dynamics in actual data we applied it to various 

time course datasets. 

 

In a first setting, we reanalyzed nine publicly available time-series studies of various genetic, drug and 

physiological treatments spanning a wide range of cell line contexts and timescales. Using orthos, we 

decomposed the expression changes over time to their decoded and residual components. We 

computed the portion of variance explained by each component and also kept track of the total 

treatment variance (Fig. 4a). We observe a consistent trend whereby both the total variance and the 

fraction explained by the decoded contrast component gradually increase resulting in a concomitant 

decrease of the residual-contrast-explained variance. This profile is consistent with the dynamics 

outlined earlier whereby total variance increases as secondary effects compound and cells move away 

from their initial steady state. It is also in line with the asserted roles of the decomposed contrast 

components, with the decoded contrast tracking the gradually more prominent secondary effects and 

the residual contrast mirroring the subsiding relative importance of direct treatment effects and 

experimental noise. Interestingly, in many experiments, a plateau is reached for the total variance and 

the decoded-explained variance portion but, in several cases, this is attained first in the latter. This is 

precisely what one would anticipate if secondary effects become dominant before a new steady state 

is reached, with the two plateaus being hallmarks of these two milestones.  

 

We then moved to a high-throughput single-cell study that interrogated the effects of specific 

compounds in multiple cell lines, at two distinct time-points (6 hours and 24 hours) after treatment [[MIX-

Seq]]. After decomposition of the DGE profiles of condition-grouped pseudobulks we calculated the 

fraction of variance explained by each component in the two evaluated time-points (Fig. 4b). We find 

that, with the exception of a small number of drug treatments that produce no effects, the fraction of 
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variance explained by the decoded fraction is consistently higher at the later time point and conversely 

for the residual fraction. This is true irrespective of drug, cell line context and treatment effect size in 

any of the two time points (Fig. 4b, Fig Sx). As in the previous analysis, this showcases a robust 

association of the decoded and residual contrasts with delayed and early treatment effects respectively. 

We interpret this as a direct outcome of the time dynamics of direct and secondary treatment effects, 

with the former being reflected in the residual contrasts and the latter in the decoded contrasts. 

 

 

Discussion 
 
We present here orthos, a novel approach for dissecting the effects of experimental treatments on gene 

expression, by decomposing their specific and non-specific effects. This addresses a common problem 

in differential gene expression studies that is key to their interpretation and has important repercussions 

in both basic and applied research. By providing a more discerning picture of how gene expression 

changes in response to genetic perturbations, it can offer new insights into gene function and the 

biological processes they are involved in. In addition, by aiding the disambiguation of primary and 

secondary effects upon molecular or physiological treatments it can advance the study of complex 

regulatory networks that govern cellular function. In chemical biology and drug discovery we envision 

orthos as a new tool for the identification of the molecular targets of compounds and elucidation of their 

mechanisms of action, which are critical yet notoriously laborious aspects in drug research and 

development.   

The utility of orthos is further enhanced by its integration with the compiled contrast database, which 

encompasses data from over 100,000 differential gene expression experiments. This corpus of data 

provides a rich resource for researchers seeking to compare their results with existing experiments. We 

release the trained models, the complete input and decomposed contrast database, including extensive 

sample and feature annotation and programmatic bindings for their retrieval as a standalone resource 

in a companion data package: 

 https://bioconductor.org/packages/devel/data/experiment/html/orthosData.html. 

 We provide functions for new contrast decomposition, querying against the contrast database and 

results visualization in the main orthos analysis package: 

 https://bioconductor.org/packages/devel/bioc/html/orthos.html. 

https://bioconductor.org/packages/devel/data/experiment/html/orthosData.html
https://bioconductor.org/packages/devel/bioc/html/orthos.html
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Figure 1. 

 
 

 

 

Figure 2. 
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Figure 3. 
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Figure 4. 

 


