Since read counts are summed across cells in a pseudobulk approach, modeling continuous cell-level covariates also requires a collapsing step. Here we summarize the values of a variable from a set of cells using the mean, and store the value for each cell type. Including these variables in a regression formula uses the summarized values from the corresponding cell type.
We demonstrate this feature on a lightly modified analysis of PBMCs from 8 individuals stimulated with interferon-β (Kang, et al, 2018, Nature Biotech).
Here is the code from the main vignette:
library(dreamlet)
library(muscat)
library(ExperimentHub)
library(scater)
# Download data, specifying EH2259 for the Kang, et al study
eh <- ExperimentHub()
sce <- eh[["EH2259"]]
# only keep singlet cells with sufficient reads
sce <- sce[rowSums(counts(sce) > 0) > 0, ]
sce <- sce[, colData(sce)$multiplets == "singlet"]
# compute QC metrics
qc <- perCellQCMetrics(sce)
# remove cells with few or many detected genes
ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE)
sce <- sce[, !ol]
# set variable indicating stimulated (stim) or control (ctrl)
sce$StimStatus <- sce$stim
In many datasets, continuous cell-level variables could be mapped reads, gene count, mitochondrial rate, etc. There are no continuous cell-level variables in this dataset, so we can simulate two from a normal distribution:
sce$value1 <- rnorm(ncol(sce))
sce$value2 <- rnorm(ncol(sce))
Now compute the pseudobulk using standard code:
sce$id <- paste0(sce$StimStatus, sce$ind)
# Create pseudobulk
pb <- aggregateToPseudoBulk(sce,
assay = "counts",
cluster_id = "cell",
sample_id = "id",
verbose = FALSE
)
The means per variable, cell type, and sample are stored in the pseudobulk SingleCellExperiment
object:
metadata(pb)$aggr_means
## # A tibble: 128 × 5
## # Groups: cell [8]
## cell id cluster value1 value2
## <fct> <fct> <dbl> <dbl> <dbl>
## 1 B cells ctrl101 3.96 0.102 -0.0409
## 2 B cells ctrl1015 4.00 0.00903 0.0262
## 3 B cells ctrl1016 4 -0.0819 -0.0363
## 4 B cells ctrl1039 4.04 0.118 -0.354
## 5 B cells ctrl107 4 0.461 -0.0924
## 6 B cells ctrl1244 4 -0.0371 -0.0827
## 7 B cells ctrl1256 4.01 0.0280 0.0430
## 8 B cells ctrl1488 4.02 -0.0282 0.0773
## 9 B cells stim101 4.09 -0.196 0.0144
## 10 B cells stim1015 4.06 -0.0123 -0.0779
## # ℹ 118 more rows
Including these variables in a regression formula uses the summarized values from the corresponding cell type. This happens behind the scenes, so the user doesn’t need to distinguish bewteen sample-level variables stored in colData(pb)
and cell-level variables stored in metadata(pb)$aggr_means
.
Variance partition and hypothesis testing proceeds as ususal:
form <- ~ StimStatus + value1 + value2
# Normalize and apply voom/voomWithDreamWeights
res.proc <- processAssays(pb, form, min.count = 5)
# run variance partitioning analysis
vp.lst <- fitVarPart(res.proc, form)
# Summarize variance fractions genome-wide for each cell type
plotVarPart(vp.lst, label.angle = 60)
# Differential expression analysis within each assay
res.dl <- dreamlet(res.proc, form)
# dreamlet results include coefficients for value1 and value2
res.dl
## class: dreamletResult
## assays(8): B cells CD14+ Monocytes ... Megakaryocytes NK cells
## Genes:
## min: 164
## max: 5262
## details(7): assay n_retain ... n_errors error_initial
## coefNames(4): (Intercept) StimStatusstim value1 value2
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] Matrix_1.6-1.1 muscData_1.15.0
## [3] scater_1.30.0 scuttle_1.12.0
## [5] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
## [7] Biobase_2.62.0 GenomicRanges_1.54.0
## [9] GenomeInfoDb_1.38.0 IRanges_2.36.0
## [11] S4Vectors_0.40.0 MatrixGenerics_1.14.0
## [13] matrixStats_1.0.0 ExperimentHub_2.10.0
## [15] AnnotationHub_3.10.0 BiocFileCache_2.10.0
## [17] dbplyr_2.3.4 BiocGenerics_0.48.0
## [19] muscat_1.16.0 dreamlet_1.0.0
## [21] variancePartition_1.32.0 BiocParallel_1.36.0
## [23] limma_3.58.0 ggplot2_3.4.4
## [25] BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 httr_1.4.7
## [3] RColorBrewer_1.1-3 doParallel_1.0.17
## [5] Rgraphviz_2.46.0 numDeriv_2016.8-1.1
## [7] tools_4.3.1 sctransform_0.4.1
## [9] backports_1.4.1 utf8_1.2.4
## [11] R6_2.5.1 mgcv_1.9-0
## [13] GetoptLong_1.0.5 withr_2.5.1
## [15] prettyunits_1.2.0 gridExtra_2.3
## [17] cli_3.6.1 sandwich_3.0-2
## [19] labeling_0.4.3 sass_0.4.7
## [21] KEGGgraph_1.62.0 SQUAREM_2021.1
## [23] mvtnorm_1.2-3 blme_1.0-5
## [25] mixsqp_0.3-48 zenith_1.4.0
## [27] parallelly_1.36.0 invgamma_1.1
## [29] RSQLite_2.3.1 generics_0.1.3
## [31] shape_1.4.6 gtools_3.9.4
## [33] dplyr_1.1.3 ggbeeswarm_0.7.2
## [35] fansi_1.0.5 abind_1.4-5
## [37] lifecycle_1.0.3 multcomp_1.4-25
## [39] yaml_2.3.7 edgeR_4.0.0
## [41] gplots_3.1.3 SparseArray_1.2.0
## [43] grid_4.3.1 blob_1.2.4
## [45] promises_1.2.1 crayon_1.5.2
## [47] lattice_0.22-5 beachmat_2.18.0
## [49] msigdbr_7.5.1 annotate_1.80.0
## [51] KEGGREST_1.42.0 magick_2.8.1
## [53] pillar_1.9.0 knitr_1.44
## [55] ComplexHeatmap_2.18.0 rjson_0.2.21
## [57] boot_1.3-28.1 estimability_1.4.1
## [59] corpcor_1.6.10 future.apply_1.11.0
## [61] codetools_0.2-19 glue_1.6.2
## [63] data.table_1.14.8 vctrs_0.6.4
## [65] png_0.1-8 Rdpack_2.5
## [67] gtable_0.3.4 assertthat_0.2.1
## [69] cachem_1.0.8 xfun_0.40
## [71] mime_0.12 rbibutils_2.2.15
## [73] S4Arrays_1.2.0 Rfast_2.0.8
## [75] coda_0.19-4 survival_3.5-7
## [77] iterators_1.0.14 statmod_1.5.0
## [79] ellipsis_0.3.2 interactiveDisplayBase_1.40.0
## [81] TH.data_1.1-2 nlme_3.1-163
## [83] pbkrtest_0.5.2 bit64_4.0.5
## [85] filelock_1.0.2 progress_1.2.2
## [87] EnvStats_2.8.1 bslib_0.5.1
## [89] TMB_1.9.6 irlba_2.3.5.1
## [91] vipor_0.4.5 KernSmooth_2.23-22
## [93] colorspace_2.1-0 rmeta_3.0
## [95] DBI_1.1.3 DESeq2_1.42.0
## [97] tidyselect_1.2.0 emmeans_1.8.9
## [99] curl_5.1.0 bit_4.0.5
## [101] compiler_4.3.1 graph_1.80.0
## [103] BiocNeighbors_1.20.0 DelayedArray_0.28.0
## [105] bookdown_0.36 scales_1.2.1
## [107] caTools_1.18.2 remaCor_0.0.16
## [109] rappdirs_0.3.3 stringr_1.5.0
## [111] digest_0.6.33 minqa_1.2.6
## [113] rmarkdown_2.25 aod_1.3.2
## [115] XVector_0.42.0 RhpcBLASctl_0.23-42
## [117] htmltools_0.5.6.1 pkgconfig_2.0.3
## [119] lme4_1.1-34 sparseMatrixStats_1.14.0
## [121] mashr_0.2.79 fastmap_1.1.1
## [123] rlang_1.1.1 GlobalOptions_0.1.2
## [125] shiny_1.7.5.1 DelayedMatrixStats_1.24.0
## [127] farver_2.1.1 jquerylib_0.1.4
## [129] zoo_1.8-12 jsonlite_1.8.7
## [131] BiocSingular_1.18.0 RCurl_1.98-1.12
## [133] magrittr_2.0.3 GenomeInfoDbData_1.2.11
## [135] munsell_0.5.0 Rcpp_1.0.11
## [137] babelgene_22.9 viridis_0.6.4
## [139] EnrichmentBrowser_2.32.0 RcppZiggurat_0.1.6
## [141] stringi_1.7.12 zlibbioc_1.48.0
## [143] MASS_7.3-60 plyr_1.8.9
## [145] listenv_0.9.0 parallel_4.3.1
## [147] ggrepel_0.9.4 Biostrings_2.70.0
## [149] splines_4.3.1 hms_1.1.3
## [151] circlize_0.4.15 locfit_1.5-9.8
## [153] reshape2_1.4.4 ScaledMatrix_1.10.0
## [155] BiocVersion_3.18.0 XML_3.99-0.14
## [157] evaluate_0.22 BiocManager_1.30.22
## [159] httpuv_1.6.12 nloptr_2.0.3
## [161] foreach_1.5.2 tidyr_1.3.0
## [163] purrr_1.0.2 future_1.33.0
## [165] clue_0.3-65 scattermore_1.2
## [167] ashr_2.2-63 rsvd_1.0.5
## [169] broom_1.0.5 xtable_1.8-4
## [171] fANCOVA_0.6-1 later_1.3.1
## [173] viridisLite_0.4.2 truncnorm_1.0-9
## [175] tibble_3.2.1 lmerTest_3.1-3
## [177] glmmTMB_1.1.8 memoise_2.0.1
## [179] beeswarm_0.4.0 AnnotationDbi_1.64.0
## [181] cluster_2.1.4 globals_0.16.2
## [183] GSEABase_1.64.0