Package 'ssPATHS'

March 26, 2024

Type Package

Title ssPATHS: Single Sample PATHway Score

Version 1.16.0

Author Natalie R. Davidson

Maintainer Natalie R. Davidson <natalie.davidson@inf.ethz.ch>

Description This package generates pathway scores from expression data for single samples after training on a reference cohort. The score is generated by taking the expression of a gene set (pathway) from a reference cohort and performing linear discriminant analysis to distinguish samples in the cohort that have the pathway augmented and not. The separating hyperplane is then used to score new samples.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Imports ROCR, dml, MESS

Suggests ggplot2, testthat (>= 2.1.0)

Depends SummarizedExperiment

RoxygenNote 6.1.1

biocViews Software, GeneExpression, BiomedicalInformatics, RNASeq, Pathways, Transcriptomics, DimensionReduction, Classification

git_url https://git.bioconductor.org/packages/ssPATHS

git_branch RELEASE_3_18

git_last_commit 1afaa73

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-25

11

R topics documented:

expected_score_output .																
gene_weights_reference																
get_classification_accurac	у.															
get_gene_weights																
get_hypoxia_genes																
get_new_samp_score																
$new_samp_df \ . \ . \ . \ . \ .$																
tcga_expr_df																

 $\begin{tabular}{ll} expected_score_output & \textit{Gene Expression Values for PDAC Cancer Cell Lines exposed to Hy-poxia \\ \end{tabular}$

Description

Gene Expression Values for PDAC Cancer Cell Lines exposed to Hypoxia

Usage

Index

```
data(expected_score_output)
```

Format

A data frame with columns:

sample_id String. The name of the sample. Samples with "hyp" or "norm" in the sample id are cell lines that were exposed to hypoxic or normoxic conditions respectively. Samples with "ctrl" or "noHIF" were samples that were able to produce a HIF-mediated hypoxic response or not, respectively.

pathway_score Float. The estimated hypoxia score for this sample.

Source

Derived Data

Examples

```
## Not run:
    expected_score_output
## End(Not run)
```

gene_weights_reference

```
gene_weights_reference
```

Gene Expression Values for PDAC Cancer Cell Lines exposed to Hypoxia

Description

Gene Expression Values for PDAC Cancer Cell Lines exposed to Hypoxia

Usage

```
data(gene_weights_reference)
```

Format

A data frame with columns:

```
gene_weight Float. Gene weighting learned from reference data.gene_id String. The ensembl id of the gene.
```

Source

Derived data

Examples

```
## Not run:
  gene_weights_reference
## End(Not run)
```

Description

Get the AUC-ROC, AUC-PR, and ROC/PR curves for plotting.

Usage

```
get_classification_accuracy(sample_scores, positive_val)
```

Arguments

sample_scores This is a data.frame containing the sample id, score, and true label Y. This object

is returned by the method get_gene_weights.

positive_val This is the value that will denote a true positive. It must be one of the two values

in the Y column in sample_scores.

Value

This returns a list of performance metrics

auc_pr Area under the PR-curve auc_roc Area under the ROC-curve

perf_pr ROCR object for plotting the PR-curve perf_roc ROCR object for plotting the ROC-curve

Author(s)

Natalie R. Davidson

Examples

```
data(tcga_expr_df)
# transform from data.frame to SummarizedExperiment
tcga_se <- SummarizedExperiment(t(tcga_expr_df[ , -(1:4)]),</pre>
                                  colData=tcga_expr_df[ , 2:4])
colnames(tcga_se) <- tcga_expr_df$tcga_id</pre>
colData(tcga_se)$sample_id <- tcga_expr_df$tcga_id</pre>
hypoxia_gene_ids <- get_hypoxia_genes()</pre>
hypoxia_gene_ids <- intersect(hypoxia_gene_ids, rownames(tcga_se))</pre>
colData(tcga_se)$Y <- ifelse(colData(tcga_se)$is_normal, 0, 1)</pre>
# now we can get the gene weightings
res <- get_gene_weights(tcga_se, hypoxia_gene_ids, unidirectional=TRUE)</pre>
sample_scores <- res[[2]]</pre>
# check how well we did
training_res <- get_classification_accuracy(sample_scores, positive_val=1)</pre>
print(training_res[[2]])
plot(training_res[[3]], col="orange", ylim=c(0, 1))
legend(0.1,0.8,c(training_res$auc_pr,"\n"), border="white", cex=1.7,
        box.col = "white")
plot(training_res[[4]], col="blue", ylim=c(0, 1))
legend(0.1,0.8,c(training_res$auc_roc,"\n"),border="white",cex=1.7,
        box.col = "white")
```

get_gene_weights 5

get_gene_weights

Get Gene Weights from Reference Data

Description

This method performs linear discriminant analysis on a reference dataset using a pre-defined set of genes related to a pathway of interest.

Usage

```
get_gene_weights(expression_se, gene_ids, unidirectional)
```

Arguments

expression_se

This is an SummarizedExperiment object of the reference samples. Rows are genes and columns are samples. The colData component must contain a sample_id column. Within this method, there is a normalization step where each sample is scaled across all genes in the SummarizedExperiment assay. For this to be stable and consistent, we recommend that the assay contain at least 500 genes that are consistently expressed across all samples in addition to the genes in the pathway of interest.

gene_ids

This is a vector of strings, where each element is a gene_id in the pathway of interest. The gene_ids must be present in rownames(expression_se).

unidirectional

This is a boolean, default=TRUE. Most genesets are unidirectional, meaning that most genes are either increasing or decreasing together. If this is set to TRUE, then the learned weights will be clipped such that the dominant directionality is kept, and the other gene weights are set to zero.

Value

A list containing the gene weights and estimated scores of the reference samples.

proj_vector_df

A dataframe containing the gene weights and gene ids

dca_proj

A dataframe containing the sample scores and sample ids.

Author(s)

Natalie R. Davidson

References

Steven C.H. Hoi, W. Liu, M.R. Lyu and W.Y. Ma (2006). Learning Distance Metrics with Contextual Constraints for Image Retrieval. Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR2006).

6 get_hypoxia_genes

Examples

get_hypoxia_genes

Get Ensembl ids of hypoxia related genes.

Description

Returns a vector of Ensembl ids of hypoxia related genes.

Usage

```
get_hypoxia_genes()
```

Value

Vector of ensembl ids.

Author(s)

Natalie R. Davidson

Examples

```
# read in the reference expression data for hypoxia score generation
data(tcga_expr_df)
```

transform from data.frame to SummarizedExperiment

get_new_samp_score 7

get_new_samp_score

Get a pathway score for an unseen sample

Description

Using the gene weights learned from the reference cohort, we apply the weightings to new samples to estimate their pathway activity.

Usage

```
get_new_samp_score(gene_weights, expression_se, gene_ids, run_normalization = TRUE)
```

Arguments

gene_weights

This is a data.frame containing gene ids and gene weights, output by get_gene_weights. The gene ids must be in the column ids of expression_matr.

expression_se

This is an SummarizedExperiment object of the reference samples. Rows are genes and columns are samples. The colData component must contain columns Y and sample_id. The former indicates whether this is a positive or negative sample and the latter is the unique sample id. Within this method, there is a normalization step where each sample is scaled across all genes in the SummarizedExperiment assay. For this to be stable and consistent, we recommend that the assay contain at least 500 genes that are consistently expressed across all samples in addition to the genes in the pathway of interest.

gene_ids

This is a vector of strings, where each element is a gene_id in the pathway of interest. The gene_ids must be present in rownames(expression_se).

run_normalization

Boolean value. If TRUE, the data will be log-transformed, centered and scaled. This is recommended since this is done to the reference set when learning the gene weights.

Value

A data frame containing the sample id, sample score, and associated Y value if it was included in expression_se.

8 new_samp_df

Author(s)

Natalie R. Davidson

Examples

```
data(tcga_expr_df)
# transform from data.frame to SummarizedExperiment
tcga_se <- SummarizedExperiment(t(tcga_expr_df[ , -(1:4)]),</pre>
                                  colData=tcga_expr_df[ , 2:4])
colnames(tcga_se) <- tcga_expr_df$tcga_id</pre>
colData(tcga_se)$sample_id <- tcga_expr_df$tcga_id</pre>
# get the genes of interest, here hypoxia genes
hypoxia_gene_ids <- get_hypoxia_genes()</pre>
hypoxia_gene_ids <- intersect(hypoxia_gene_ids, rownames(tcga_se))</pre>
# label the samples for classification
colData(tcga_se)$Y <- ifelse(colData(tcga_se)$is_normal, 0, 1)</pre>
# now we can get the gene weightings
res <- get_gene_weights(tcga_se, hypoxia_gene_ids, unidirectional=TRUE)
gene_weights <- res[[1]]</pre>
sample_scores <- res[[2]]</pre>
# get the new data so we can apply our score to it
data(new_samp_df)
new_samp_se <- SummarizedExperiment(t(new_samp_df[ , -(1)]),</pre>
                                       colData=new_samp_df[ , 1, drop=FALSE])
colnames(colData(new_samp_se)) <- "sample_id"</pre>
new_score_df_calculated <- get_new_samp_score(gene_weights, new_samp_se)</pre>
```

new_samp_df

Gene Expression Values for PDAC Cancer Cell Lines exposed to Hypoxia

Description

A data frame with columns:

sample_id String. The name of the sample. Samples with "hyp" or "norm" in the sample id are cell lines that were exposed to hypoxic or normoxic conditions respectively. Samples with "ctrl" or "noHIF" were samples that were able to produce a HIF-mediated hypoxic response or not, respectively.

ENSG00000074410 Int. Gene expression value for this gene.

tcga_expr_df

Usage

```
data(new_samp_df)
```

Format

An object of class data. frame with 12 rows and 27 columns.

Source

Generated by Philipp Markolin, files will be uploaded on GEO

Examples

```
## Not run:
  new_samp_df
## End(Not run)
```

tcga_expr_df

Gene Expression Values for PDAC Cancer Cell Lines exposed to Hypoxia

Description

A data frame with columns:

```
tcga_id String. TCGA aliquot barcodestudy String. TCGA study abbreviation
```

is_normal Boolean. TRUE if sample is adjacent normal, FALSE if tumor.

libsize_75percent Float. Library size as estimated by the 75th quartile.

ENSG0000070831 String. Library size normalized gene expression value for this gene.

Usage

```
data(tcga_expr_df)
```

Format

An object of class data. frame with 9461 rows and 54 columns.

Source

This data is generated by the TCGA Research Network: https://www.cancer.gov/tcga and downloaded from the NCI Genomic Data Commons.

10 tcga_expr_df

Examples

```
## Not run:
  tcga_expr_df
## End(Not run)
```

Index

```
* datasets
    expected_score_output, 2
    gene_weights_reference, 3
    new_samp_df, 8
    tcga_expr_df, 9

expected_score_output, 2

gene_weights_reference, 3
get_classification_accuracy, 3
get_gene_weights, 5
get_hypoxia_genes, 6
get_new_samp_score, 7

new_samp_df, 8

tcga_expr_df, 9
```