
Package ‘miloR’
March 26, 2024

Type Package

Title Differential neighbourhood abundance testing on a graph

Version 1.10.0

Description Milo performs single-cell differential abundance testing. Cell states are modelled
as representative neighbourhoods on a nearest neighbour graph. Hypothesis testing is per-
formed using a
negative bionomial generalized linear model.

License GPL-3 + file LICENSE

Encoding UTF-8

URL https://marionilab.github.io/miloR

BugReports https://github.com/MarioniLab/miloR/issues

biocViews SingleCell, MultipleComparison, FunctionalGenomics, Software

Depends R (>= 4.0.0), edgeR

Imports BiocNeighbors, BiocGenerics, SingleCellExperiment, Matrix (>=
1.3-0), S4Vectors, stats, stringr, methods, igraph, irlba,
cowplot, BiocParallel, BiocSingular, limma, ggplot2, tibble,
matrixStats, ggraph, gtools, SummarizedExperiment, patchwork,
tidyr, dplyr, ggrepel, ggbeeswarm, RColorBrewer, grDevices

Suggests testthat, MASS, mvtnorm, scater, scran, covr, knitr,
rmarkdown, uwot, scuttle, BiocStyle, MouseGastrulationData,
MouseThymusAgeing, magick, RCurl, curl, graphics

RoxygenNote 7.2.3

NeedsCompilation no

Collate 'AllClasses.R' 'AllGenerics.R' 'buildFromAdjacency.R'
'buildGraph.R' 'calcNhoodExpression.R' 'calcNhoodDistance.R'
'countCells.R' 'findNhoodMarkers.R' 'graphSpatialFDR.R'
'makeNhoods.R' 'milo.R' 'miloR-package.R' 'methods.R'
'plotNhoods.R' 'sim_discrete.R' 'sim_trajectory.R'
'testNhoods.R' 'testDiffExp.R' 'utils.R' 'buildNhoodGraph.R'
'annotateNhoods.R' 'groupNhoods.R' 'findNhoodGroupMarkers.R'

VignetteBuilder knitr

1

https://marionilab.github.io/miloR
https://github.com/MarioniLab/miloR/issues

2 R topics documented:

git_url https://git.bioconductor.org/packages/miloR

git_branch RELEASE_3_18

git_last_commit 7a29982

git_last_commit_date 2023-10-24

Repository Bioconductor 3.18

Date/Publication 2024-03-25

Author Mike Morgan [aut, cre],
Emma Dann [aut, ctb]

Maintainer Mike Morgan <michael.morgan@abdn.ac.uk>

R topics documented:

miloR-package . 3
annotateNhoods . 3
buildFromAdjacency . 4
buildGraph . 5
buildNhoodGraph . 6
calcNhoodDistance . 7
calcNhoodExpression . 8
countCells . 9
findNhoodGroupMarkers . 10
findNhoodMarkers . 12
graphSpatialFDR . 14
groupNhoods . 15
makeNhoods . 17
matrixORMatrix-class . 18
Milo-class . 19
Milo-methods . 20
plotDAbeeswarm . 22
plotNhoodCounts . 23
plotNhoodExpressionDA . 24
plotNhoodGraph . 26
plotNhoodGraphDA . 27
plotNhoodMA . 28
plotNhoodSizeHist . 29
sim_discrete . 30
sim_trajectory . 30
testDiffExp . 31
testNhoods . 33

Index 36

miloR-package 3

miloR-package The miloR package

Description

The miloR package provides modular functions to perform differential abundance testing on repli-
cated single-cell experiments. For details please see the vignettes vignette("milo_demo", package="miloR")
and vignette("milo_gastrulation", package="miloR").

Author(s)

Mike Morgan & Emma Dann

annotateNhoods Add annotations from colData to DA testing results

Description

This function assigns a categorical label to neighbourhoods in the differential abundance results
data.frame (output of testNhoods), based on the most frequent label among cells in each neigh-
bourhood. This can be useful to stratify DA testing results by cell types or samples. Also the
fraction of cells carrying that label is stored.

Usage

annotateNhoods(x, da.res, coldata_col)

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

coldata_col A character scalar determining which column of colData(x) stores the annota-
tion to be added to the neighbourhoods

Details

For each neighbourhood, this calculates the most frequent value of colData(x)[coldata_col]
among cells in the neighbourhood and assigns that value as annotation for the neighbourhood,
adding a column in the da.res data.frame. In addition, a coldata_col_fraction column will be
added, storing the fraction of cells carrying the assigned label. While in practice neighbourhoods
are often homogeneous, one might choose to remove an annotation label when the fraction of cells
with the label is too low (e.g. below 0.6).

4 buildFromAdjacency

Value

A data.frame of model results (as da.res input) with two new columns: (1) coldata_col storing
the assigned label for each neighbourhood; (2) coldata_col_fraction storing the fraction of cells
in the neighbourhood with the assigned label.

Author(s)

Emma Dann

Examples

NULL

buildFromAdjacency Build a graph from an input adjacency matrix

Description

Construct a kNN-graph from an input adjacency matrix - either binary or distances between NNs.

Arguments

x An n X n matrix of single-cells, where values represent edges between cells;
0 values are taken to mean no edge between cells. If the matrix is not binary,
then it is assumed the values are distances; 0 retain the same meaning. This
behaviour can be toggled using is.binary=TRUE.

k (optional) Scalar value that represents the number of nearest neighbours in the
original graph. This can also be inferred directly from the adjacency matrix x.

is.binary Logical scalar indicating if the input matrix is binary or not.

Details

This function will take a matrix as input and construct the kNN graph that it describes. If the matrix
is not symmetric then the graph is assumed to be directed, whereas if the matrix is not binary, i.e.
all 0’s and 1’s then the input values are taken to be distances between graph vertices; 0 values are
assumed to represent a lack of edge between vertices.

Value

A Milo with the graph slot populated.

Author(s)

Mike Morgan

buildGraph 5

Examples

r <- 1000
c <- 1000
k <- 35
m <- floor(matrix(runif(r*c), r, c))
for(i in seq_along(1:r)){

m[i, sample(1:c, size=k)] <- 1
}

milo <- buildFromAdjacency(m)

buildGraph Build a k-nearest neighbour graph

Description

This function is borrowed from the old buildKNNGraph function in scran. Instead of returning an
igraph object it populates the graph and distance slots in a Milo object. If the input is a Single-
CellExperiment object or a matrix then it will return a de novo Milo object with the same slots
filled.

Usage

buildGraph(
x,
k = 10,
d = 50,
transposed = FALSE,
get.distance = FALSE,
reduced.dim = "PCA",
BNPARAM = KmknnParam(),
BSPARAM = bsparam(),
BPPARAM = SerialParam()

)

Arguments

x A matrix, SingleCellExperiment or Milo object containing feature X cell gene
expression data.

k An integer scalar that specifies the number of nearest-neighbours to consider for
the graph building.

d The number of dimensions to use if the input is a matrix of cells X reduced
dimensions. If this is provided, transposed should also be set=TRUE.

transposed Logical if the input x is transposed with rows as cells.

get.distance A logical scalar whether to compute distances during graph construction.

6 buildNhoodGraph

reduced.dim A character scalar that refers to a specific entry in the reduceDim slot of the
Milo object.

BNPARAM refer to buildKNNGraph for details.

BSPARAM refer to buildKNNGraph for details.

BPPARAM refer to buildKNNGraph for details.

Details

This function computes a k-nearest neighbour graph. Each graph vertex is a single-cell connected by
the edges between its neighbours. Whilst a kNN-graph is strictly directed, we remove directionality
by forcing all edge weights to 1; this behaviour can be overriden by providing directed=TRUE.

If you wish to use an alternative graph structure, such as a shared-NN graph I recommend you
construct this separately and add to the relevant slot in the Milo object.

Value

A Milo object with the graph and distance slots populated.

Author(s)

Mike Morgan, with KNN code written by Aaron Lun & Jonathan Griffiths.

Examples

library(SingleCellExperiment)
ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, d=30, transposed=TRUE)

milo

buildNhoodGraph Build an abstracted graph of neighbourhoods for visualization

Description

Build an abstracted graph of neighbourhoods for visualization

Usage

buildNhoodGraph(x, overlap = 1)

calcNhoodDistance 7

Arguments

x A Milo object with a non-empty nhoods slot.

overlap A numeric scalar that thresholds graph edges based on the number of overlap-
ping cells between neighbourhoods.

Details

This constructs a weighted graph where nodes represent neighbourhoods and edges represent the
number of overlapping cells between two neighbourhoods.

Value

A Milo object containg an igraph graph in the nhoodGraph slot.

Author(s)

Emma Dann

Examples

NULL

calcNhoodDistance Calculate within neighbourhood distances

Description

This function will calculate Euclidean distances between single-cells in a neighbourhood using the
same dimensionality as was used to construct the graph. This step follows the makeNhoods call to
limit the number of distance calculations required.

Usage

calcNhoodDistance(x, d, reduced.dim = NULL, use.assay = "logcounts")

Arguments

x A Milo object with a valid graph slot. If reduced.dims is not provided and
there is no valid populated reducedDim slot in x, then this is computed first with
d + 1 principal components.

d The number of dimensions to use for computing within-neighbourhood dis-
tances. This should be the same value used construct the graph.

reduced.dim If x is an Milo object, a character indicating the name of the reducedDim slot in
the Milo object to use as (default: ’PCA’). Otherwise this should be an N X P
matrix with rows in the same order as the columns of the input Milo object x.

use.assay A character scalar defining which assay slot in the Milo to use

8 calcNhoodExpression

Value

A Milo object with the distance slots populated.

Author(s)

Mike Morgan, Emma Dann

Examples

library(SingleCellExperiment)
ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, d=30, transposed=TRUE)
milo <- makeNhoods(milo)
milo <- calcNhoodDistance(milo, d=30)

milo

calcNhoodExpression Average expression within neighbourhoods

Description

This function calculates the mean expression of each feature in the Milo object stored in the assays
slot. Neighbourhood expression data are stored in a new slot nhoodExpression.

Usage

calcNhoodExpression(x, assay = "logcounts", subset.row = NULL, exprs = NULL)

Arguments

x A Milo object with nhoods slot populated, alternatively a NxM indicator matrix
of N cells and M nhoods.

assay A character scalar that describes the assay slot to use for calculating neighbour-
hood expression.

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

exprs If x is a list of neighbourhoods, exprs is a matrix of genes X cells to use for
calculating neighbourhood expression.

countCells 9

Details

This function computes the mean expression of each gene, subset by subset.rows where present,
across the cells contained within each neighbourhood.

Value

A Milo object with the nhoodExpression slot populated.

Author(s)

Mike Morgan

Examples

require(SingleCellExperiment)
m <- matrix(rnorm(100000), ncol=100)
milo <- Milo(SingleCellExperiment(assays=list(logcounts=m)))
milo <- buildGraph(m, k=20, d=30)
milo <- makeNhoods(milo)
milo <- calcNhoodExpression(milo)
dim(nhoodExpression(milo))

countCells Count cells in neighbourhoods

Description

This function quantifies the number of cells in each neighbourhood according to an input experi-
mental design. This forms the basis for the differential neighbourhood abundance testing.

Usage

countCells(x, samples, meta.data = NULL)

Arguments

x A Milo object with non-empty graph and nhoods slots.

samples Either a string specifying which column of data should be used to identify the
experimental samples for counting, or a named vector of sample ids mapping
each single cell to it’s respective sample.

meta.data A cell X variable data.frame containing study meta-data including experimen-
tal sample IDs. Assumed to be in the same order as the cells in the input Milo
object.

10 findNhoodGroupMarkers

Details

This function generates a counts matrix of nhoods X samples, and populates the nhoodCounts slot
of the input Milo object. This matrix is used down-stream for differential abundance testing.

Value

A Milo object containing a counts matrix in the nhoodCounts slot.

Author(s)

Mike Morgan, Emma Dann

Examples

library(igraph)
m <- matrix(rnorm(100000), ncol=100)
milo <- buildGraph(t(m), k=20, d=10)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

cond <- rep("A", nrow(m))
cond.a <- sample(seq_len(nrow(m)), size=floor(nrow(m)*0.25))
cond.b <- setdiff(seq_len(nrow(m)), cond.a)
cond[cond.b] <- "B"
meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 330), rep("R2", 330), rep("R3", 340)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")
milo

findNhoodGroupMarkers Identify post-hoc neighbourhood marker genes

Description

This function will perform differential gene expression analysis on groups of neighbourhoods. Ad-
jacent and concordantly DA neighbourhoods can be defined using groupNhoods or by the user.
Cells between these aggregated groups are compared. For differential gene experession based on an
input design within DA neighbourhoods see testDiffExp.

Usage

findNhoodGroupMarkers(
x,
da.res,
assay = "logcounts",
aggregate.samples = FALSE,
sample_col = NULL,
subset.row = NULL,

findNhoodGroupMarkers 11

gene.offset = TRUE,
subset.nhoods = NULL,
subset.groups = NULL,
na.function = "na.pass"

)

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods, as
a NhoodGroup column specifying the grouping of neighbourhoods, as expected
from

assay A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

aggregate.samples

logical indicating wheather the expression values for cells in the same sample
and neighbourhood group should be merged for DGE testing. This allows to
perform testing exploiting the replication structure in the experimental design,
rather than treating single-cells as independent replicates. The function used for
aggregation depends on the selected gene expression assay: if assay="counts"
the expression values are summed, otherwise we take the mean.

sample_col a character scalar indicating the column in the colData storing sample informa-
tion (only relevant if aggregate.samples==TRUE)

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

gene.offset A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing (default: NULL).

subset.groups A character vector indicating which groups to test for markers (default: NULL)

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

Details

Using a one vs. all approach, each aggregated group of cells is compared to all others using the
single-cell log normalized gene expression with a GLM (for details see limma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
the latter it is recommended to set gene.offset=TRUE as this behaviour adjusts the model offsets
by the number of detected genes in each cell.

Value

A data.frame of DGE results containing a log fold change and adjusted p-value for each aggre-
gated group of neighbourhoods. If return.groups then the return value is a list with the slots
groups and dge containing the aggregated neighbourhood groups per single-cell and marker gene
results, respectively.

12 findNhoodMarkers

Warning: If all neighbourhoods are grouped together, then it is impossible to run findNhoodMarkers.
In this (hopefully rare) instance, this function will return a warning and return NULL.

findNhoodMarkers Identify post-hoc neighbourhood marker genes

Description

This function will perform differential gene expression analysis on differentially abundant neigh-
bourhoods, by first aggregating adjacent and concordantly DA neighbourhoods, then comparing
cells between these aggregated groups. For differential gene experession based on an input design
within DA neighbourhoods see testDiffExp.

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

da.fdr A numeric scalar that determines at what FDR neighbourhoods are declared DA
for the purposes of aggregating across concorantly DA neighbourhoods.

assay A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

aggregate.samples

logical indicating wheather the expression values for cells in the same sample
and neighbourhood group should be merged for DGE testing. This allows to
perform testing exploiting the replication structure in the experimental design,
rather than treating single-cells as independent replicates. The function used for
aggregation depends on the selected gene expression assay: if assay="counts"
the expression values are summed, otherwise we take the mean.

sample_col a character scalar indicating the column in the colData storing sample informa-
tion (only relevant if aggregate.samples==TRUE)

overlap A scalar integer that determines the number of cells that must overlap between
adjacent neighbourhoods for merging.

lfc.threshold A scalar that determines the absolute log fold change above which neighbour-
hoods should be considerd ’DA’ for merging. Default=NULL

merge.discord A logical scalar that overrides the default behaviour and allows adjacent neigh-
bourhoods to be merged if they have discordant log fold change signs. Using
this argument is generally discouraged, but may be useful for constructing an
empirical null group of cells, regardless of DA sign.

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

gene.offset A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

return.groups A logical scalar that returns a data.frame of the aggregated groups per single-
cell. Cells that are members of non-DA neighbourhoods contain NA values.

findNhoodMarkers 13

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing.

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

compute.new A logical scalar indicating whether to force computing a new neighbourhood
adjacency matrix if already present.

Details

Louvain clustering is applied to the neighbourhood graph. This graph is first modified based on
two criteria: 1) neighbourhoods share at least overlap number of cells, and 2) the DA log fold
change sign is concordant. This behaviour can be modulated by setting overlap to be more or less
stringent. Additionally, a threshold on the log fold-changes can be set, such that lfc.threshold
is required to retain edges between adjacent neighbourhoods. Note: adjacent neighbourhoods will
never be merged with opposite signs.

Using a one vs. all approach, each aggregated group of cells is compared to all others using the
single-cell log normalized gene expression with a GLM (for details see limma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
the latter it is recommended to set gene.offset=TRUE as this behaviour adjusts the model offsets
by the number of detected genes in each cell.

Value

A data.frame of DGE results containing a log fold change and adjusted p-value for each aggre-
gated group of neighbourhoods. If return.groups then the return value is a list with the slots
groups and dge containing the aggregated neighbourhood groups per single-cell and marker gene
results, respectively.

Warning: If all neighbourhoods are grouped together, then it is impossible to run findNhoodMarkers.
In this (hopefully rare) instance, this function will return a warning and return NULL.

Author(s)

Mike Morgan & Emma Dann

Examples

library(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

colnames(sce) <- paste0("Cell", seq_len(ncol(sce)))
milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

14 graphSpatialFDR

milo <- calcNhoodDistance(milo, d=10)

cond <- rep("A", ncol(milo))
cond.a <- sample(seq_len(ncol(milo)), size=floor(ncol(milo)*0.25))
cond.b <- setdiff(seq_len(ncol(milo)), cond.a)
cond[cond.b] <- "B"
meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample
da.res <- testNhoods(milo, design=~0 + Condition, design.df=test.meta[colnames(nhoodCounts(milo)),])

nhood.dge <- findNhoodMarkers(milo, da.res, overlap=1, compute.new=TRUE)
nhood.dge

graphSpatialFDR Control the spatial FDR

Description

Borrowing heavily from cydar which corrects for multiple-testing using a weighting scheme based
on the volumetric overlap over hyperspheres. In the instance of graph neighbourhoods this weight-
ing scheme can use graph connectivity or incorpate different within-neighbourhood distances for
the weighted FDR calculation.

Arguments

x.nhoods A list of vertices and the constituent vertices of their neighbourhood
graph The kNN graph used to define the neighbourhoods
pvalues A vector of p-values calculated from a GLM or other appropriate statistical test

for differential neighbourhood abundance
k A numeric integer that determines the kth nearest neighbour distance to use for

the weighted FDR. Only applicaple when using weighting="k-distance".
weighting A string scalar defining which weighting scheme to use. Choices are: max,

k-distance, neighbour-distance or graph-overlap.
reduced.dimensions

(optional) A matrix of cells X reduced dimensions used to calculate the kNN
graph. Only necessary if this function is being used outside of testNhoods
where the Milo object is not available

distances (optional) A matrix of cell-to-cell distances or a list of distance matrices, 1
per neighbourhood. Only necessary if this function is being used outside of
testNhoods where the Milo object is not available.

indices (optional) A list of neighbourhood index vertices in the same order as the input
neighbourhoods. Only used for the k-distance weighting.

groupNhoods 15

Details

Each neighbourhood is weighted according to the weighting scheme defined. k-distance uses
the distance to the kth nearest neighbour of the index vertex, neighbour-distance uses the aver-
age within-neighbourhood Euclidean distance in reduced dimensional space, max uses the largest
within-neighbourhood distance from the index vertex, and graph-overlap uses the total number of
cells overlapping between neighborhoods (distance-independent measure). The frequency-weighted
version of the BH method is then applied to the p-values, as in cydar.

Value

A vector of adjusted p-values

Author(s)

Adapted by Mike Morgan, original function by Aaron Lun

Examples

NULL

groupNhoods Group neighbourhoods

Description

This function groups overlapping and concordantly DA neighbourhoods, using the louvain commu-
nity detection algorithm.

Usage

groupNhoods(
x,
da.res,
da.fdr = 0.1,
overlap = 1,
max.lfc.delta = NULL,
merge.discord = FALSE,
subset.nhoods = NULL,
compute.new = FALSE,
na.function = "na.pass"

)

16 groupNhoods

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

da.fdr A numeric scalar that determines at what FDR neighbourhoods are declared DA
for the purposes of aggregating across concorantly DA neighbourhoods.

overlap A scalar integer that determines the number of cells that must overlap between
adjacent neighbourhoods for merging.

max.lfc.delta A scalar that determines the absolute difference in log fold change below which
neighbourhoods should not be considered adjacent. Default=NULL

merge.discord A logical scalar that overrides the default behaviour and allows adjacent neigh-
bourhoods to be merged if they have discordant log fold change signs. Using
this argument is generally discouraged, but may be useful for constructing an
empirical null group of cells, regardless of DA sign.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before grouping. All other neighbourhoods will be assigned NA

compute.new A logical scalar indicating whether to force computing a new neighbourhood
adjacency matrix if already present.

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass (default=’na.pass’).

Details

Louvain clustering is applied to the neighbourhood graph. This graph is first modified based on
two criteria: 1) neighbourhoods share at least overlap number of cells, and 2) the DA log fold
change sign is concordant. This behaviour can be modulated by setting overlap to be more or less
stringent. Additionally, a threshold on the log fold-changes can be set, such that max.lfc.delta
is required to retain edges between adjacent neighbourhoods. Note: adjacent neighbourhoods will
never be merged with opposite signs.

Value

A data.frame of model results (as da.res input) with a new column storing the assigned group
label for each neighbourhood (NhoodGroup column)

Author(s)

Emma Dann & Mike Morgan

makeNhoods 17

makeNhoods Define neighbourhoods on a graph (fast)

Description

This function randomly samples vertices on a graph to define neighbourhoods. These are then re-
fined by either computing the median profile for the neighbourhood in reduced dimensional space
and selecting the nearest vertex to this position (refinement_scheme = "reduced_dim"), or by com-
puting the vertex with the highest number of triangles within the neighborhood (refinement_scheme
= "graph"). Thus, multiple neighbourhoods may be collapsed down together to prevent over-
sampling the graph space.

Usage

makeNhoods(
x,
prop = 0.1,
k = 21,
d = 30,
refined = TRUE,
reduced_dims = "PCA",
refinement_scheme = "reduced_dim"

)

Arguments

x A Milo object with a non-empty graph slot. Alternatively an igraph object on
which neighbourhoods will be defined.

prop A double scalar that defines what proportion of graph vertices to randomly sam-
ple. Must be 0 < prop < 1.

k An integer scalar - the same k used to construct the input graph.

d The number of dimensions to use if the input is a matrix of cells X reduced
dimensions.

refined A logical scalar that determines the sampling behavior, default=TRUE imple-
ments a refined sampling scheme, specified by the refinement_scheme argu-
ment.

reduced_dims If x is an Milo object, a character indicating the name of the reducedDim slot
in the Milo object to use as (default: ’PCA’). If x is an igraph object, a matrix
of vertices X reduced dimensions with rownames() set to correspond to the
cellIDs.

refinement_scheme

A character scalar that defines the sampling scheme, either "reduced_dim" or
"graph". Default is "reduced_dim".

18 matrixORMatrix-class

Details

This function randomly samples graph vertices, then refines them to collapse down the number of
neighbourhoods to be tested. The refinement behaviour can be turned off by setting refine=FALSE,
however, we do not recommend this as neighbourhoods will contain a lot of redundancy and lead
to an unnecessarily larger multiple-testing burden.

Value

A Milo object containing a list of vertices and the indices of vertices that constitute the neighbour-
hoods in the nhoods slot. If the input is a igraph object then the output is a matrix containing a list
of vertices and the indices of vertices that constitute the neighbourhoods.

Author(s)

Emma Dann, Mike Morgan

Examples

require(igraph)
m <- matrix(rnorm(100000), ncol=100)
milo <- buildGraph(m, d=10)

milo <- makeNhoods(milo, prop=0.1)
milo

matrixORMatrix-class The Milo container class

Description

The Milo container class

Slots

graph An igraph object that represents the kNN graph
nhoods A CxN binary sparse matrix mapping cells to the neighbourhoods they belong to
nhoodDistances An list of PxN sparse matrices of Euclidean distances between vertices in each

neighbourhood, one matrix per neighbourhood
nhoodCounts An NxM sparse matrix of cells counts in each neighourhood across M samples
nhoodIndex A list of the index vertices for each neighbourhood
nhoodExpression An GxN matrix of genes X neighbourhoods containing average gene expression

levels across cells in each neighbourhood
nhoodReducedDim a list of reduced dimensional representations of neighbourhoods, including pro-

jections into lower dimension space
nhoodGraph an igraph object that represents the graph of neighbourhoods
.k A hidden slot that stores the value of k used for graph building

Milo-class 19

Milo-class The Milo constructor

Description

The Milo class extends the SingleCellExperiment class and is designed to work with neighbour-
hoods of cells. Therefore, it inherits from the SingleCellExperiment class and follows the same
usage conventions. There is additional support for cell-to-cell distances via distance, and the KNN-
graph used to define the neighbourhoods.

Usage

Milo(
...,
graph = list(),
nhoodDistances = Matrix(0L, sparse = TRUE),
nhoods = Matrix(0L, sparse = TRUE),
nhoodCounts = Matrix(0L, sparse = TRUE),
nhoodIndex = list(),
nhoodExpression = Matrix(0L, sparse = TRUE),
.k = NULL

)

Arguments

... Arguments passed to the Milo constructor to fill the slots of the base class. This
should be either a SingleCellExperiment or matrix of features X cells

graph An igraph object or list of adjacent vertices that represents the KNN-graph

nhoodDistances A list containing sparse matrices of cell-to-cell distances for cells in the same
neighbourhoods, one list entry per neighbourhood.

nhoods A list of graph vertices, each containing the indices of the constiuent graph
vertices in the respective neighbourhood

nhoodCounts A matrix of neighbourhood X sample counts of the number of cells in each
neighbourhood derived from the respective samples

nhoodIndex A list of cells that are the neighborhood index cells.
nhoodExpression

A matrix of gene X neighbourhood expression.

.k An integer value. The same value used to build the k-NN graph if already com-
puted.

Details

In this class the underlying structure is the gene/feature X cell expression data. The additional
slots provide a link between these single cells and the neighbourhood representation. This can be

20 Milo-methods

further extended by the use of an abstracted graph for visualisation that preserves the structure of
the single-cell KNN-graph

A Milo object can also be constructed by inputting a feature X cell gene expression matrix. In this
case it simply constructs a SingleCellExperiment and fills the relevant slots, such as reducedDims.

Value

a Milo object

Author(s)

Mike Morgan

Examples

library(SingleCellExperiment)
ux <- matrix(rpois(12000, 5), ncol=200)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo

Milo-methods Get and set methods for Milo objects

Description

Get and set methods for Milo object slots. Generally speaking these methods are used internally, but
they allow the user to assign their own externally computed values - should be used with caution.

Getters

In the following descriptions x is always a Milo object.

graph(x): Returns an igraph object representation of the KNN-graph, with number of vertices
equal to the number of single-cells.

nhoodDistances(x): Returns a list of sparse matrix of cell-to-cell distances between nearest neigh-
bours, one list entry per neighbourhood. Largely used internally for computing the k-distance
weighting in graphSpatialFDR.

nhoodCounts(x): Returns a NxM sparse matrix of cell counts in each of N neighbourhoods with
respect to the M experimental samples defined.

nhoodExpression(x): Returns a GxN matrix of gene expression values.

Milo-methods 21

nhoodIndex(x): Returns a list of the single-cells that are the neighbourhood indices.

nhoodReducedDim(x): Returns an NxP matrix of reduced dimension positions. Either generated
by projectNhoodExpression(x) or by providing an NxP matrix (see setter method below).

nhoods(x): Returns a sparse matrix of CxN mapping of C single-cells toN neighbourhoods.

nhoodGraph(x): Returns an igraph object representation of the graph of neighbourhoods, with
number of vertices equal to the number of neighbourhoods.

nhoodAdjacency(x): Returns a matrix of N by N neighbourhoods with entries of 1 where neigh-
bourhods share cells, and 0 elsewhere.

Setters

In the following descriptions x is always a Milo object.

graph(x) <- value: Populates the graph slot with value - this should be a valid graph representa-
tion in either igraph or list format.

nhoodDistances(x) <- value: Replaces the internally comptued neighbourhood distances. This
is normally computed internally during graph building, but can be defined externally. Must
be a list with one entry per neighbourhood containing the cell-to-cell distances for the cells
within that neighbourhood.

nhoodCounts(x) <- value: Replaces the neighbourhood counts matrix. This is normally com-
puted and assigned by countCells, however, it can also be user-defined.

nhoodExpression(x) <- value: Replaces the nhoodExpression slot. This is calculated inter-
nally by calcNhoodExpression, which calculates the mean expression. An alternative sum-
mary function can be used to assign an alternative in this way.

nhoodIndex(x) <- value: Replaces the list of neighbourhood indices. This is provided purely for
completeness, and is usually only set internally in makeNhoods.

nhoodReducedDim(x) <- value: Replaces the reduced dimensional representation or projection of
neighbourhoods. This can be useful for externally computed projections or representations.

nhoods(x) <- value: Replaces the neighbourhood matrix. Generally use of this function is dis-
couraged, however, it may be useful for users to define their own bespoke neighbourhoods by
some means.

nhoodGraph(x) <- value: Populates the nhoodGraph slot with value - this should be a valid
graph representation in either igraph or list format.

nhoodAdjacency(x) <- value: Populates the nhoodAdjacency slot with value - this should be a
N by N matrix with elements denoting which neighbourhoods share cells

Miscellaneous

A collection of non-getter and setter methods that operate on Milo objects.

show(x): Prints information to the console regarding the Milo object.

Author(s)

Mike Morgan

22 plotDAbeeswarm

Examples

example(Milo, echo=FALSE)
show(milo)

plotDAbeeswarm Visualize DA results as a beeswarm plot

Description

Visualize DA results as a beeswarm plot

Usage

plotDAbeeswarm(da.res, group.by = NULL, alpha = 0.1, subset.nhoods = NULL)

Arguments

da.res a data.frame of DA testing results

group.by a character scalar determining which column of da.res to use for grouping.
This can be a column added to the DA testing results using the ‘annotateNhoods‘
function. If da.res[,group.by] is a character or a numeric, the function will
coerce it to a factor (see details) (default: NULL, no grouping)

alpha significance level for Spatial FDR (default: 0.1)

subset.nhoods A logical, integer or character vector indicating a subset of nhoods to show in
plot (default: NULL, no subsetting)

Details

The group.by variable will be coerced to a factor. If you want the variables in group.by to be in a
given order make sure you set the column to a factor with the levels in the right order before running
the function.

Value

a ggplot object

Author(s)

Emma Dann

Examples

NULL

plotNhoodCounts 23

plotNhoodCounts Plot the number of cells in a neighbourhood per sample and condition

Description

Plot the number of cells in a neighbourhood per sample and condition

Usage

plotNhoodCounts(x, subset.nhoods, design.df, condition, n_col = 3)

Arguments

x A Milo object with a non-empty nhoodCounts slot.

subset.nhoods A logical, integer or character vector indicating the rows of nhoodCounts(x)
to use for plotting. If you use a logical vector, make sure the length matches
nrow(nhoodCounts(x)).

design.df A data.frame which matches samples to a condition of interest. The row names
should correspond to the samples. You can use the same design.df that you
already used in the testNhoods function.

condition String specifying the condition of interest Has to be a column in the design.

n_col Number of columns in the output ggplot.

Value

A ggplot-class object

Author(s)

Nick Hirschmüller

Examples

require(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=300)
ux.2 <- matrix(rpois(12000, 4), ncol=300)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)
milo <- calcNhoodDistance(milo, d=10)

cond <- sample(c("A","B","C"),300,replace=TRUE)

24 plotNhoodExpressionDA

meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 100), rep("R2", 100), rep("R3", 100)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

design.mtx <- data.frame("Condition"=c(rep("A", 3), rep("B", 3), rep("C",3)),
"Replicate"=rep(c("R1", "R2", "R3"), 3))

design.mtx$SampID <- paste(design.mtx$Condition, design.mtx$Replicate, sep="_")
rownames(design.mtx) <- design.mtx$SampID

plotNhoodCounts(x = milo,
subset.nhoods = c(1,2),
design.df = design.mtx,
condition = "Condition")

plotNhoodExpressionDA Visualize gene expression in neighbourhoods

Description

Plots the average gene expression in neighbourhoods, sorted by DA fold-change

Plots the average gene expression in neighbourhood groups

Usage

plotNhoodExpressionDA(
x,
da.res,
features,
alpha = 0.1,
subset.nhoods = NULL,
cluster_features = FALSE,
assay = "logcounts",
scale_to_1 = FALSE,
show_rownames = TRUE,
highlight_features = NULL

)

plotNhoodExpressionGroups(
x,
da.res,
features,
alpha = 0.1,
subset.nhoods = NULL,
cluster_features = FALSE,
assay = "logcounts",
scale_to_1 = FALSE,

plotNhoodExpressionDA 25

show_rownames = TRUE,
highlight_features = NULL,
grid.space = "free"

)

Arguments

x A Milo object

da.res a data.frame of DA testing results

features a character vector of features to plot (they must be in rownames(x))

alpha significance level for Spatial FDR (default: 0.1)

subset.nhoods A logical, integer or character vector indicating a subset of nhoods to show in
plot (default: NULL, no subsetting)

cluster_features

logical indicating whether features should be clustered with hierarchical cluster-
ing. If FALSE then the order in features is maintained (default: FALSE)

assay A character scalar that describes the assay slot to use for calculating neighbour-
hood expression. (default: logcounts) Of note: neighbourhood expression will
be computed only if the requested features are not in the nhoodExpression slot
of the milo object. If you wish to plot average neighbourhood expression from
a different assay, you should run calcNhoodExpression(x) with the desired
assay.

scale_to_1 A logical scalar to re-scale gene expression values between 0 and 1 for visuali-
sation.

show_rownames A logical scalar whether to plot rownames or not. Generally useful to set this to
show_rownames=FALSE when plotting many genes.

highlight_features

A character vector of feature names that should be highlighted on the right side
of the heatmap. Generally useful in conjunction to show_rownames=FALSE, if
you are interested in only a few features

grid.space a character setting the space parameter for facet.grid ('fixed' for equally
sized facets, 'free' to adapt the size of facent to number of neighbourhoods in
group)

Value

a ggplot object

a ggplot object

Author(s)

Emma Dann

26 plotNhoodGraph

Examples

NULL

NULL

plotNhoodGraph Plot graph of neighbourhood

Description

Visualize graph of neighbourhoods

Usage

plotNhoodGraph(
x,
layout = "UMAP",
colour_by = NA,
subset.nhoods = NULL,
size_range = c(0.5, 3),
node_stroke = 0.3,
...

)

Arguments

x A Milo object

layout this can be (a) a character indicating the name of the reducedDim slot in the
Milo object to use for layout (default: ’UMAP’) (b) an igraph layout object

colour_by this can be a data.frame of milo results or a character corresponding to a column
in colData

subset.nhoods A logical, integer or character vector indicating a subset of nhoods to show in
plot (default: NULL, no subsetting)

size_range a numeric vector indicating the range of node sizes to use for plotting (to avoid
overplotting in the graph)

node_stroke a numeric indicating the desired thickness of the border around each node

... arguments to pass to ggraph

Value

a ggplot-class object

Author(s)

Emma Dann

plotNhoodGraphDA 27

Examples

NULL

plotNhoodGraphDA Plot Milo results on graph of neighbourhood

Description

Visualize log-FC estimated with differential nhood abundance testing on embedding of original
single-cell dataset.

Visualize grouping of neighbourhoods obtained with groupNhoods

Usage

plotNhoodGraphDA(x, milo_res, alpha = 0.05, res_column = "logFC", ...)

plotNhoodGroups(x, milo_res, show_groups = NULL, ...)

Arguments

x A Milo object

milo_res a data.frame of milo results containing the nhoodGroup column

alpha significance level for Spatial FDR (default: 0.05)

res_column which column of milo_res object to use for color (default: logFC)

... arguments to pass to plotNhoodGraph

show_groups a character vector indicating which groups to plot all other neighbourhoods will
be gray

Value

a ggplot object

a ggplot object

Author(s)

Emma Dann

Examples

NULL

NULL

28 plotNhoodMA

plotNhoodMA Visualize DA results as an MAplot

Description

Visualize DA results as an MAplot

Usage

plotNhoodMA(da.res, alpha = 0.05, null.mean = 0)

Arguments

da.res A data.frame of DA testing results

alpha A numeric scalar that represents the Spatial FDR threshold for statistical signif-
icance.

null.mean A numeric scalar determining the expected value of the log fold change under
the null hypothesis. default=0.

Details

MA plots provide a useful means to evaluate the distribution of log fold changes after differential
abundance testing. In particular, they can be used to diagnose global shifts that occur in the presence
of confounding between the number of cells acquired and the experimental variable of interest. The
expected null value for the log FC distribution (grey dashed line), along with the mean observed
log fold change for non-DA neighbourhoods (purple dashed line) are plotted for reference. The
deviation between these two lines can give an indication of biases in the results, such as in the
presence of a single strong region of DA leading to an increase in false positive DA neighbourhoods
in the opposite direction.

Value

a ggplot object

Author(s)

Mike Morgan

Examples

NULL

plotNhoodSizeHist 29

plotNhoodSizeHist Plot histogram of neighbourhood sizes

Description

This function plots the histogram of the number of cells belonging to each neighbourhood

Usage

plotNhoodSizeHist(milo, bins = 50)

Arguments

milo A Milo object with a non-empty nhoods slot.

bins number of bins for geom_histogram

Value

A ggplot-class object

Author(s)

Emma Dann

Examples

require(igraph)
require(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

colnames(sce) <- paste0("Cell", seq_len(ncol(sce)))
milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)

milo <- makeNhoods(milo, d=10, prop=0.1)
plotNhoodSizeHist(milo)

30 sim_trajectory

sim_discrete sim_discrete

Description

Simulated discrete groups data

Usage

data(sim_discrete)

Format

A list containing a Milo object in the "mylo" slot, and a data.frame containing experimental meta-
data in the "meta" slot.

Details

Data are simulated single-cells in 4 distinct groups of cells. Cells in each group are assigned to 1 of
2 conditions: A or B. Specifically, the cells in block 1 are highly abundant in the A condition, whilst
cells in block 4 are most abundant in condition B.

Examples

NULL

sim_trajectory Simulated linear trajectory data

Description

Data are simulated single-cells along a single linear trajectory. Cells are simulated from 5 groups,
and assigned to 1 of 2 conditions; A or B. Data were generated using in the simulate_linear_trajectory
function in the dyntoy package.

Usage

data(sim_trajectory)

Format

A list containing a Milo object in the "mylo" slot, and a data.frame containing experimental meta-
data in the "meta" slot.

testDiffExp 31

References

https://github.com/dynverse/dyntoy

Examples

NULL

testDiffExp Perform post-hoc differential gene expression analysis

Description

This function will perform differential gene expression analysis within differentially abundant neigh-
bourhoods, by first aggregating adjacent and concordantly DA neighbourhoods, then comparing
cells within these aggregated groups for differential gene expression using the input design. For
comparing between DA neighbourhoods see findNhoodMarkers.

Usage

testDiffExp(
x,
da.res,
design,
meta.data,
model.contrasts = NULL,
assay = "logcounts",
subset.nhoods = NULL,
subset.row = NULL,
gene.offset = TRUE,
n.coef = NULL,
na.function = "na.pass"

)

Arguments

x A Milo object containing single-cell gene expression and neighbourhoods.

da.res A data.frame containing DA results, as expected from running testNhoods.

design A formula or model.matrix object describing the experimental design for dif-
ferential gene expression testing. The last component of the formula or last
column of the model matrix are by default the test variable. This behaviour can
be overridden by setting the model.contrasts argument. This should be the
same as was used for DA testing.

meta.data A cell X variable data.frame containing single-cell meta-data to which design
refers. The order of rows (cells) must be the same as the Milo object columns.

32 testDiffExp

model.contrasts

A string vector that defines the contrasts used to perform DA testing. This should
be the same as was used for DA testing.

assay A character scalar determining which assays slot to extract from the Milo ob-
ject to use for DGE testing.

subset.nhoods A logical, integer or character vector indicating which neighbourhoods to subset
before aggregation and DGE testing (default: NULL).

subset.row A logical, integer or character vector indicating the rows of x to use for sumam-
rizing over cells in neighbourhoods.

gene.offset A logical scalar the determines whether a per-cell offset is provided in the DGE
GLM to adjust for the number of detected genes with expression > 0.

n.coef A numeric scalar refering to the coefficient to select from the DGE model. This
is especially pertinent when passing an ordered variable and only one specific
type of effects are to be tested.

na.function A valid NA action function to apply, should be one of na.fail, na.omit,
na.exclude, na.pass.

Details

Adjacent neighbourhoods are first merged based on two criteria: 1) they share at least overlap
number of cells, and 2) the DA log fold change sign is concordant. This behaviour can be modulated
by setting overlap to be more or less stringent. Additionally, a threshold on the log fold-changes
can be set, such that lfc.threshold is required to merge adjacent neighbourhoods. Note: adjacent
neighbourhoods will never be merged with opposite signs unless merge.discord=TRUE.

Within each aggregated group of cells differential gene expression testing is performed using the
single-cell log normalized gene expression with a GLM (for details see limma-package), or the
single-cell counts using a negative binomial GLM (for details see edgeR-package). When using
single-cell data for DGE it is recommended to set gene.offset=TRUE as this behaviour adjusts the
model by the number of detected genes in each cell as a proxy for differences in capture efficiency
and cellular RNA content.

Value

A list containing a data.frame of DGE results for each aggregated group of neighbourhoods.

Author(s)

Mike Morgan & Emma Dann

Examples

data(sim_discrete)

milo <- Milo(sim_discrete$SCE)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)

meta.df <- sim_discrete$meta

testNhoods 33

meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")
milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample
da.res <- testNhoods(milo, design=~Condition, design.df=test.meta[colnames(nhoodCounts(milo)),])
da.res <- groupNhoods(milo, da.res, da.fdr=0.1)
nhood.dge <- testDiffExp(milo, da.res, design=~Condition, meta.data=meta.df)
nhood.dge

testNhoods Perform differential neighbourhood abundance testing

Description

This will perform differential neighbourhood abundance testing after cell counting.

Arguments

x A Milo object with a non-empty nhoodCounts slot.
design A formula or model.matrix object describing the experimental design for dif-

ferential abundance testing. The last component of the formula or last column
of the model matrix are by default the test variable. This behaviour can be over-
ridden by setting the model.contrasts argument

design.df A data.frame containing meta-data to which design refers to
min.mean A scalar used to threshold neighbourhoods on the minimum average cell counts

across samples.
model.contrasts

A string vector that defines the contrasts used to perform DA testing.
fdr.weighting The spatial FDR weighting scheme to use. Choice from max, neighbour-distance,

graph-overlap or k-distance (default). If none is passed no spatial FDR correc-
tion is performed and returns a vector of NAs.

robust If robust=TRUE then this is passed to edgeR and limma which use a robust
estimation for the global quasilikelihood dispersion distribution. See edgeR and
Phipson et al, 2013 for details.

norm.method A character scalar, either "logMS", "TMM" or "RLE". The "logMS" method nor-
malises the counts across samples using the log columns sums of the count ma-
trix as a model offset. "TMM" uses the trimmed mean of M-values normalisation
as described in Robinson & Oshlack, 2010, whilst "RLE" uses the relative log
expression method by Anders & Huber, 2010, to compute normalisation factors
relative to a reference computed from the geometric mean across samples. The
latter methods provides a degree of robustness against false positives when there
are very large compositional differences between samples.

reduced.dim A character scalar referring to the reduced dimensional slot used to compute dis-
tances for the spatial FDR. This should be the same as used for graph building.

34 testNhoods

Details

This function wraps up several steps of differential abundance testing using the edgeR functions.
These could be performed separately for users who want to exercise more contol over their DA test-
ing. By default this function sets the lib.sizes to the colSums(x), and uses the Quasi-Likelihood
F-test in glmQLFTest for DA testing. FDR correction is performed separately as the default multiple-
testing correction is inappropriate for neighbourhoods with overlapping cells.

Value

A data.frame of model results, which contain:

logFC: Numeric, the log fold change between conditions, or for an ordered/continous variable the
per-unit change in (normalized) cell counts per unit-change in experimental variable.

logCPM: Numeric, the log counts per million (CPM), which equates to the average log normalized
cell counts across all samples.

F: Numeric, the F-test statistic from the quali-likelihood F-test implemented in edgeR.

PValue: Numeric, the unadjusted p-value from the quasi-likelihood F-test.

FDR: Numeric, the Benjamini & Hochberg false discovery weight computed from p.adjust.

Nhood: Numeric, a unique identifier corresponding to the specific graph neighbourhood.

SpatialFDR: Numeric, the weighted FDR, computed to adjust for spatial graph overlaps between
neighbourhoods. For details see graphSpatialFDR.

Author(s)

Mike Morgan

Examples

library(SingleCellExperiment)
ux.1 <- matrix(rpois(12000, 5), ncol=400)
ux.2 <- matrix(rpois(12000, 4), ncol=400)
ux <- rbind(ux.1, ux.2)
vx <- log2(ux + 1)
pca <- prcomp(t(vx))

sce <- SingleCellExperiment(assays=list(counts=ux, logcounts=vx),
reducedDims=SimpleList(PCA=pca$x))

milo <- Milo(sce)
milo <- buildGraph(milo, k=20, d=10, transposed=TRUE)
milo <- makeNhoods(milo, k=20, d=10, prop=0.3)
milo <- calcNhoodDistance(milo, d=10)

cond <- rep("A", ncol(milo))
cond.a <- sample(1:ncol(milo), size=floor(ncol(milo)*0.25))
cond.b <- setdiff(1:ncol(milo), cond.a)
cond[cond.b] <- "B"
meta.df <- data.frame(Condition=cond, Replicate=c(rep("R1", 132), rep("R2", 132), rep("R3", 136)))
meta.df$SampID <- paste(meta.df$Condition, meta.df$Replicate, sep="_")

testNhoods 35

milo <- countCells(milo, meta.data=meta.df, samples="SampID")

test.meta <- data.frame("Condition"=c(rep("A", 3), rep("B", 3)), "Replicate"=rep(c("R1", "R2", "R3"), 2))
test.meta$Sample <- paste(test.meta$Condition, test.meta$Replicate, sep="_")
rownames(test.meta) <- test.meta$Sample
da.res <- testNhoods(milo, design=~Condition, design.df=test.meta[colnames(nhoodCounts(milo)),], norm.method="TMM")
da.res

Index

∗ datasets
sim_discrete, 30
sim_trajectory, 30

annotateNhoods, 3

buildFromAdjacency, 4
buildGraph, 5
buildKNNGraph, 6
buildNhoodGraph, 6

calcNhoodDistance, 7
calcNhoodExpression, 8
countCells, 9

data.frame, 12

findNhoodGroupMarkers, 10
findNhoodMarkers, 12, 31

graph (Milo-methods), 20
graph,Milo-method (Milo-methods), 20
graph<- (Milo-methods), 20
graph<-,Milo-method (Milo-methods), 20
graphSpatialFDR, 14, 34
groupNhoods, 15

makeNhoods, 17
matrixORMatrix-class, 18
Milo, 3, 4, 6–12, 14, 16–18, 20, 21, 23, 25–27,

29–33
Milo (Milo-class), 19
Milo-class, 19
Milo-methods, 20
miloR-package, 3

nhoodAdjacency (Milo-methods), 20
nhoodAdjacency,Milo-method

(Milo-methods), 20
nhoodAdjacency<- (Milo-methods), 20

nhoodAdjacency<-,Milo-method
(Milo-methods), 20

nhoodCounts (Milo-methods), 20
nhoodCounts,Milo-method (Milo-methods),

20
nhoodCounts<- (Milo-methods), 20
nhoodCounts<-,Milo-method

(Milo-methods), 20
nhoodDistances (Milo-methods), 20
nhoodDistances,Milo-method

(Milo-methods), 20
nhoodDistances<- (Milo-methods), 20
nhoodDistances<-,Milo-method

(Milo-methods), 20
nhoodExpression (Milo-methods), 20
nhoodExpression,Milo-method

(Milo-methods), 20
nhoodExpression<- (Milo-methods), 20
nhoodExpression<-,Milo-method

(Milo-methods), 20
nhoodGraph (Milo-methods), 20
nhoodGraph,Milo-method (Milo-methods),

20
nhoodGraph<- (Milo-methods), 20
nhoodGraph<-,Milo-method

(Milo-methods), 20
nhoodIndex (Milo-methods), 20
nhoodIndex,Milo-method (Milo-methods),

20
nhoodIndex<- (Milo-methods), 20
nhoodIndex<-,Milo-method

(Milo-methods), 20
nhoodReducedDim (Milo-methods), 20
nhoodReducedDim,Milo-method

(Milo-methods), 20
nhoodReducedDim<- (Milo-methods), 20
nhoodReducedDim<-,Milo-method

(Milo-methods), 20
nhoods (Milo-methods), 20

36

INDEX 37

nhoods,Milo-method (Milo-methods), 20
nhoods<- (Milo-methods), 20
nhoods<-,Milo-method (Milo-methods), 20

plotDAbeeswarm, 22
plotNhoodCounts, 23
plotNhoodExpressionDA, 24
plotNhoodExpressionGroups

(plotNhoodExpressionDA), 24
plotNhoodGraph, 26
plotNhoodGraphDA, 27
plotNhoodGroups (plotNhoodGraphDA), 27
plotNhoodMA, 28
plotNhoodSizeHist, 29

show (Milo-methods), 20
show,Milo-method (Milo-methods), 20
sim_discrete, 30
sim_trajectory, 30
SingleCellExperiment, 5, 19

testDiffExp, 10, 12, 31
testNhoods, 33

	miloR-package
	annotateNhoods
	buildFromAdjacency
	buildGraph
	buildNhoodGraph
	calcNhoodDistance
	calcNhoodExpression
	countCells
	findNhoodGroupMarkers
	findNhoodMarkers
	graphSpatialFDR
	groupNhoods
	makeNhoods
	matrixORMatrix-class
	Milo-class
	Milo-methods
	plotDAbeeswarm
	plotNhoodCounts
	plotNhoodExpressionDA
	plotNhoodGraph
	plotNhoodGraphDA
	plotNhoodMA
	plotNhoodSizeHist
	sim_discrete
	sim_trajectory
	testDiffExp
	testNhoods
	Index

