cellCellSimulate
functionscTensor 2.10.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.3.0 RC (2023-04-13 r84269)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.14.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.17.0
## [5] GO.db_3.17.0
## [6] OrganismDbi_1.42.0
## [7] GenomicFeatures_1.52.0
## [8] AnnotationDbi_1.62.0
## [9] SingleCellExperiment_1.22.0
## [10] SummarizedExperiment_1.30.0
## [11] Biobase_2.60.0
## [12] GenomicRanges_1.52.0
## [13] GenomeInfoDb_1.36.0
## [14] IRanges_2.34.0
## [15] S4Vectors_0.38.0
## [16] MatrixGenerics_1.12.0
## [17] matrixStats_0.63.0
## [18] scTensor_2.10.0
## [19] RSQLite_2.3.1
## [20] LRBaseDbi_2.10.0
## [21] AnnotationHub_3.8.0
## [22] BiocFileCache_2.8.0
## [23] dbplyr_2.3.2
## [24] BiocGenerics_0.46.0
## [25] BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] rTensor_1.4.8 GSEABase_1.62.0
## [3] progress_1.2.2 goftest_1.2-3
## [5] Biostrings_2.68.0 vctrs_0.6.2
## [7] spatstat.random_3.1-4 digest_0.6.31
## [9] png_0.1-8 registry_0.5-1
## [11] ggrepel_0.9.3 deldir_1.0-6
## [13] parallelly_1.35.0 magick_2.7.4
## [15] MASS_7.3-59 reshape2_1.4.4
## [17] httpuv_1.6.9 foreach_1.5.2
## [19] qvalue_2.32.0 withr_2.5.0
## [21] xfun_0.39 ggfun_0.0.9
## [23] ellipsis_0.3.2 survival_3.5-5
## [25] memoise_2.0.1 hexbin_1.28.3
## [27] gson_0.1.0 tidytree_0.4.2
## [29] zoo_1.8-12 pbapply_1.7-0
## [31] entropy_1.3.1 prettyunits_1.1.1
## [33] KEGGREST_1.40.0 promises_1.2.0.1
## [35] httr_1.4.5 restfulr_0.0.15
## [37] schex_1.14.0 globals_0.16.2
## [39] fitdistrplus_1.1-11 miniUI_0.1.1.1
## [41] generics_0.1.3 DOSE_3.26.0
## [43] reactome.db_1.84.0 babelgene_22.9
## [45] concaveman_1.1.0 curl_5.0.0
## [47] fields_14.1 zlibbioc_1.46.0
## [49] ggraph_2.1.0 polyclip_1.10-4
## [51] ca_0.71.1 GenomeInfoDbData_1.2.10
## [53] RBGL_1.76.0 interactiveDisplayBase_1.38.0
## [55] xtable_1.8-4 stringr_1.5.0
## [57] evaluate_0.20 hms_1.1.3
## [59] bookdown_0.33 irlba_2.3.5.1
## [61] colorspace_2.1-0 filelock_1.0.2
## [63] visNetwork_2.1.2 ROCR_1.0-11
## [65] reticulate_1.28 spatstat.data_3.0-1
## [67] magrittr_2.0.3 lmtest_0.9-40
## [69] Rgraphviz_2.44.0 later_1.3.0
## [71] viridis_0.6.2 ggtree_3.8.0
## [73] lattice_0.21-8 misc3d_0.9-1
## [75] spatstat.geom_3.1-0 future.apply_1.10.0
## [77] genefilter_1.82.0 plot3D_1.4
## [79] scattermore_0.8 XML_3.99-0.14
## [81] shadowtext_0.1.2 cowplot_1.1.1
## [83] RcppAnnoy_0.0.20 pillar_1.9.0
## [85] nlme_3.1-162 iterators_1.0.14
## [87] compiler_4.3.0 stringi_1.7.12
## [89] Category_2.66.0 TSP_1.2-4
## [91] tensor_1.5 dendextend_1.17.1
## [93] GenomicAlignments_1.36.0 plyr_1.8.8
## [95] msigdbr_7.5.1 BiocIO_1.10.0
## [97] crayon_1.5.2 abind_1.4-5
## [99] gridGraphics_0.5-1 sp_1.6-0
## [101] graphlayouts_0.8.4 bit_4.0.5
## [103] dplyr_1.1.2 fastmatch_1.1-3
## [105] tagcloud_0.6 codetools_0.2-19
## [107] bslib_0.4.2 plotly_4.10.1
## [109] mime_0.12 splines_4.3.0
## [111] Rcpp_1.0.10 HDO.db_0.99.1
## [113] knitr_1.42 blob_1.2.4
## [115] utf8_1.2.3 BiocVersion_3.17.1
## [117] listenv_0.9.0 checkmate_2.1.0
## [119] ggplotify_0.1.0 tibble_3.2.1
## [121] Matrix_1.5-4 tweenr_2.0.2
## [123] pkgconfig_2.0.3 tools_4.3.0
## [125] cachem_1.0.7 viridisLite_0.4.1
## [127] DBI_1.1.3 graphite_1.46.0
## [129] fastmap_1.1.1 rmarkdown_2.21
## [131] scales_1.2.1 grid_4.3.0
## [133] outliers_0.15 ica_1.0-3
## [135] Seurat_4.3.0 Rsamtools_2.16.0
## [137] sass_0.4.5 patchwork_1.1.2
## [139] BiocManager_1.30.20 dotCall64_1.0-2
## [141] graph_1.78.0 RANN_2.6.1
## [143] farver_2.1.1 tidygraph_1.2.3
## [145] scatterpie_0.1.9 yaml_2.3.7
## [147] AnnotationForge_1.42.0 rtracklayer_1.60.0
## [149] cli_3.6.1 purrr_1.0.1
## [151] webshot_0.5.4 leiden_0.4.3
## [153] lifecycle_1.0.3 uwot_0.1.14
## [155] backports_1.4.1 BiocParallel_1.34.0
## [157] annotate_1.78.0 MeSHDbi_1.36.0
## [159] rjson_0.2.21 gtable_0.3.3
## [161] ggridges_0.5.4 progressr_0.13.0
## [163] parallel_4.3.0 ape_5.7-1
## [165] jsonlite_1.8.4 seriation_1.4.2
## [167] bitops_1.0-7 ggplot2_3.4.2
## [169] bit64_4.0.5 assertthat_0.2.1
## [171] Rtsne_0.16 yulab.utils_0.0.6
## [173] ReactomePA_1.44.0 spatstat.utils_3.0-2
## [175] SeuratObject_4.1.3 heatmaply_1.4.2
## [177] jquerylib_0.1.4 highr_0.10
## [179] nnTensor_1.1.13 GOSemSim_2.26.0
## [181] ccTensor_1.0.2 lazyeval_0.2.2
## [183] shiny_1.7.4 htmltools_0.5.5
## [185] enrichplot_1.20.0 sctransform_0.3.5
## [187] rappdirs_0.3.3 glue_1.6.2
## [189] tcltk_4.3.0 spam_2.9-1
## [191] XVector_0.40.0 RCurl_1.98-1.12
## [193] treeio_1.24.0 gridExtra_2.3
## [195] igraph_1.4.2 R6_2.5.1
## [197] tidyr_1.3.0 fdrtool_1.2.17
## [199] cluster_2.1.4 aplot_0.1.10
## [201] DelayedArray_0.26.0 tidyselect_1.2.0
## [203] plotrix_3.8-2 GOstats_2.66.0
## [205] maps_3.4.1 xml2_1.3.3
## [207] ggforce_0.4.1 future_1.32.0
## [209] munsell_0.5.0 KernSmooth_2.23-20
## [211] data.table_1.14.8 htmlwidgets_1.6.2
## [213] fgsea_1.26.0 RColorBrewer_1.1-3
## [215] biomaRt_2.56.0 rlang_1.1.0
## [217] spatstat.sparse_3.0-1 meshr_2.6.0
## [219] spatstat.explore_3.1-0 fansi_1.0.4