recount3 1.10.2
The recount3 R/Bioconductor package is an interface to the recount3 project. recount3 provides uniformly processed RNA-seq data for hundreds of thousands of samples. The R package makes it possible to easily retrieve this data in standard Bioconductor containers, including RangedSummarizedExperiment. The sections on terminology and available data contains more detail on those subjects.
The main documentation website for all the recount3
-related projects is available at recount.bio. Please check that website for more information about how this R/Bioconductor package and other tools are related to each other.
recount3
R
is an open-source statistical environment which can be easily modified to enhance its functionality via packages. recount3 is a R
package available via the Bioconductor repository for packages. R
can be installed on any operating system from CRAN after which you can install recount3 by using the following commands in your R
session:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("recount3")
## Check that you have a valid Bioconductor installation
BiocManager::valid()
You can install the development version from GitHub with:
BiocManager::install("LieberInstitute/recount3")
recount3 is based on many other packages and in particular in those that have implemented the infrastructure needed for dealing with RNA-seq data. A recount3 user will benefit from being familiar with SummarizedExperiment to understand the objects recount3 generates. It might also prove to be highly beneficial to check the
recount2
project (Collado-Torres, Nellore, Kammers, Ellis et al., 2017; Collado-Torres, Nellore, and Jaffe, 2017).If you are asking yourself the question “Where do I start using Bioconductor?” you might be interested in this blog post.
As package developers, we try to explain clearly how to use our packages and in which order to use the functions. But R
and Bioconductor
have a steep learning curve so it is critical to learn where to ask for help. The blog post quoted above mentions some but we would like to highlight the Bioconductor support site as the main resource for getting help: remember to use the recount3
tag and check the older posts. Other alternatives are available such as creating GitHub issues and tweeting. However, please note that if you want to receive help you should adhere to the posting guidelines. It is particularly critical that you provide a small reproducible example and your session information so package developers can track down the source of the error.
We hope that recount3 will be useful for your research. Please use the following information to cite the package and the overall approach. Thank you!
## Citation info
citation("recount3")
#> To cite package 'recount3' in publications use:
#>
#> Collado-Torres L (2023). _Explore and download data from the recount3
#> project_. doi:10.18129/B9.bioc.recount3
#> <https://doi.org/10.18129/B9.bioc.recount3>,
#> https://github.com/LieberInstitute/recount3 - R package version
#> 1.10.2, <http://www.bioconductor.org/packages/recount3>.
#>
#> Wilks C, Zheng SC, Chen FY, Charles R, Solomon B, Ling JP, Imada EL,
#> Zhang D, Joseph L, Leek JT, Jaffe AE, Nellore A, Collado-Torres L,
#> Hansen KD, Langmead B (2021). "recount3: summaries and queries for
#> large-scale RNA-seq expression and splicing." _Genome Biol_.
#> doi:10.1186/s13059-021-02533-6
#> <https://doi.org/10.1186/s13059-021-02533-6>,
#> <https://doi.org/10.1186/s13059-021-02533-6>.
#>
#> To see these entries in BibTeX format, use 'print(<citation>,
#> bibtex=TRUE)', 'toBibtex(.)', or set
#> 'options(citation.bibtex.max=999)'.
After installing recount3 (Wilks, Zheng, Chen, Charles et al., 2021), we need to load the package, which will automatically load the required dependencies.
## Load recount3 R package
library("recount3")
If you have identified a study of interest and want to access the gene level expression data, use create_rse()
as shown below. create_rse()
has arguments that will allow you to specify the annotation of interest for the given organism, and whether you want to download gene, exon or exon-exon junction expression data.
## Find all available human projects
human_projects <- available_projects()
#> 2023-05-07 18:00:51.140427 caching file sra.recount_project.MD.gz.
#> 2023-05-07 18:00:51.580698 caching file gtex.recount_project.MD.gz.
#> 2023-05-07 18:00:51.839908 caching file tcga.recount_project.MD.gz.
## Find the project you are interested in,
## here we use SRP009615 as an example
proj_info <- subset(
human_projects,
project == "SRP009615" & project_type == "data_sources"
)
## Create a RangedSummarizedExperiment (RSE) object at the gene level
rse_gene_SRP009615 <- create_rse(proj_info)
#> 2023-05-07 18:00:58.196031 downloading and reading the metadata.
#> 2023-05-07 18:00:58.598048 caching file sra.sra.SRP009615.MD.gz.
#> 2023-05-07 18:00:58.830809 caching file sra.recount_project.SRP009615.MD.gz.
#> 2023-05-07 18:00:59.081815 caching file sra.recount_qc.SRP009615.MD.gz.
#> 2023-05-07 18:00:59.356195 caching file sra.recount_seq_qc.SRP009615.MD.gz.
#> 2023-05-07 18:00:59.597217 caching file sra.recount_pred.SRP009615.MD.gz.
#> 2023-05-07 18:00:59.738518 downloading and reading the feature information.
#> 2023-05-07 18:00:59.945209 caching file human.gene_sums.G026.gtf.gz.
#> 2023-05-07 18:01:00.589058 downloading and reading the counts: 12 samples across 63856 features.
#> 2023-05-07 18:01:00.74989 caching file sra.gene_sums.SRP009615.G026.gz.
#> 2023-05-07 18:01:01.061018 constructing the RangedSummarizedExperiment (rse) object.
## Explore that RSE object
rse_gene_SRP009615
#> class: RangedSummarizedExperiment
#> dim: 63856 12
#> metadata(8): time_created recount3_version ... annotation recount3_url
#> assays(1): raw_counts
#> rownames(63856): ENSG00000278704.1 ENSG00000277400.1 ...
#> ENSG00000182484.15_PAR_Y ENSG00000227159.8_PAR_Y
#> rowData names(10): source type ... havana_gene tag
#> colnames(12): SRR387777 SRR387778 ... SRR389077 SRR389078
#> colData names(175): rail_id external_id ...
#> recount_pred.curated.cell_line BigWigURL
You can also interactively choose your study of interest
## Note that you can interactively explore the available projects
proj_info_interactive <- interactiveDisplayBase::display(human_projects)
## Select a single row, then hit "send". The following code checks this.
stopifnot(nrow(proj_info_interactive) == 1)
## Then create the RSE object
rse_gene_interactive <- create_rse(proj_info_interactive)
Once you have a RSE file, you can use transform_counts()
to transform the raw coverage counts.
## Once you have your RSE object, you can transform the raw coverage
## base-pair coverage counts using transform_counts().
## For RPKM, TPM or read outputs, check the details in transform_counts().
assay(rse_gene_SRP009615, "counts") <- transform_counts(rse_gene_SRP009615)
Now you are ready to continue with downstream analysis software.
recount3 also supports accessing the BigWig raw coverage files as well as specific study or collection sample metadata. Please continue to the users guide for more detailed information.
recount3 (Wilks, Zheng, Chen, Charles et al., 2021) provides an interface for downloading the recount3 raw files and building Bioconductor-friendly R objects (Huber, Carey, Gentleman, Anders et al., 2015; Morgan, Obenchain, Hester, and Pagès, 2019) that can be used with many downstream packages. To achieve this, the raw data is organized by study from a specific data source. That same study can be a part of one or more collections, which is a manually curated set of studies with collection-specific sample metadata (see the Data source vs collection for details). To get started with recount3, you will need to identify the ID for the study of interest from either human or mouse for a particular annotation of interest. Once you have identified study, data source or collection, and annotation, recount3 can be used to build a RangedSummarizedExperiment
object (Morgan, Obenchain, Hester, and Pagès, 2019) for either gene, exon or exon-exon junction expression feature data. Furthermore, recount3 provides access to the coverage BigWig files that can be quantified for custom set of genomic regions using megadepth. Furthermore, snapcount allows fast-queries for custom exon-exon junctions and other custom input.
recount3 provides access to most of the recount3
raw files in a form that is R/Bioconductor-friendly. As a summary of the data provided by the recount3
project (Figure 1), the main data files provided are:
recount3
, which can come from sources such as the Sequence Read Archive as well as recount3
quality metrics.recount2
project, the recount3
project provides counts at the base-pair coverage level (Collado-Torres, Nellore, and Jaffe, 2017).Here we describe some of the common terminology and acronyms used throughout the rest of the documentation. recount3 enables creating RangedSummarizedExperiment
objects that contain expression quantitative data (Figure 2). As a quick overview, some of the main terms are:
RangedSummarizedExperiment
object from SummarizedExperiment (Morgan, Obenchain, Hester, and Pagès, 2019) that contains:
assays(counts)
.colData(rse)
.rowRanges(rse)
.recount3 enables accessing data from multiple reference organisms from public projects. To identify these projects, the key terms we use are:
recount3
data host: IDIES SciServer. We have two types of project homes:
recount3
.recount-brain
(Razmara, Ellis, Sokolowski, Davis et al., 2019).Many of the recount3
raw files include three columns that are used to identify each sample and that allow merging the data across these files. Those are:
recount
team. The name stems from Rail-RNA
which was the aligner used for generated the data in recount2
(Collado-Torres, Nellore, Kammers, Ellis et al., 2017).run
ID.In order to access data from recount3, the first step is to identify a project that you are interested in working with. Most of the project IDs are the ones you can find on the Sequence Read Archive (SRA). For example, SRP009615 which we use in the examples in this vignette.The exceptions are the Genotype-Expression and The Cancer Genome Atlas human studies, commonly known as GTEx and TCGA. Both GTEx and TCGA are available in recount3 by tissue.
available_projects()
While you can use external websites to find a study of interest, you can also use available_projects()
to list the projects that are available in recount3 as shown below. This will return a data.frame()
object that lists the unique project IDs.
human_projects <- available_projects()
#> 2023-05-07 18:01:01.66662 caching file sra.recount_project.MD.gz.
#> 2023-05-07 18:01:01.898517 caching file gtex.recount_project.MD.gz.
#> 2023-05-07 18:01:02.122462 caching file tcga.recount_project.MD.gz.
dim(human_projects)
#> [1] 8742 6
head(human_projects)
#> project organism file_source project_home project_type n_samples
#> 1 SRP107565 human sra data_sources/sra data_sources 216
#> 2 SRP149665 human sra data_sources/sra data_sources 4
#> 3 SRP017465 human sra data_sources/sra data_sources 23
#> 4 SRP119165 human sra data_sources/sra data_sources 6
#> 5 SRP133965 human sra data_sources/sra data_sources 12
#> 6 SRP096765 human sra data_sources/sra data_sources 7
## Select a study of interest
project_info <- subset(
human_projects,
project == "SRP009615" & project_type == "data_sources"
)
project_info
#> project organism file_source project_home project_type n_samples
#> 1838 SRP009615 human sra data_sources/sra data_sources 12
Let’s say that you are interested in the GTEx projects, you could then filter by file_source
. We’ll focus only on those entries that from a data source, and not from a collection for now.
subset(human_projects, file_source == "gtex" & project_type == "data_sources")
#> project organism file_source project_home project_type
#> 8678 ADIPOSE_TISSUE human gtex data_sources/gtex data_sources
#> 8679 MUSCLE human gtex data_sources/gtex data_sources
#> 8680 BLOOD_VESSEL human gtex data_sources/gtex data_sources
#> 8681 HEART human gtex data_sources/gtex data_sources
#> 8682 OVARY human gtex data_sources/gtex data_sources
#> 8683 UTERUS human gtex data_sources/gtex data_sources
#> 8684 VAGINA human gtex data_sources/gtex data_sources
#> 8685 BREAST human gtex data_sources/gtex data_sources
#> 8686 SKIN human gtex data_sources/gtex data_sources
#> 8687 SALIVARY_GLAND human gtex data_sources/gtex data_sources
#> 8688 BRAIN human gtex data_sources/gtex data_sources
#> 8689 ADRENAL_GLAND human gtex data_sources/gtex data_sources
#> 8690 THYROID human gtex data_sources/gtex data_sources
#> 8691 LUNG human gtex data_sources/gtex data_sources
#> 8692 SPLEEN human gtex data_sources/gtex data_sources
#> 8693 PANCREAS human gtex data_sources/gtex data_sources
#> 8694 ESOPHAGUS human gtex data_sources/gtex data_sources
#> 8695 STOMACH human gtex data_sources/gtex data_sources
#> 8696 COLON human gtex data_sources/gtex data_sources
#> 8697 SMALL_INTESTINE human gtex data_sources/gtex data_sources
#> 8698 PROSTATE human gtex data_sources/gtex data_sources
#> 8699 TESTIS human gtex data_sources/gtex data_sources
#> 8700 NERVE human gtex data_sources/gtex data_sources
#> 8701 PITUITARY human gtex data_sources/gtex data_sources
#> 8702 BLOOD human gtex data_sources/gtex data_sources
#> 8703 LIVER human gtex data_sources/gtex data_sources
#> 8704 KIDNEY human gtex data_sources/gtex data_sources
#> 8705 CERVIX_UTERI human gtex data_sources/gtex data_sources
#> 8706 FALLOPIAN_TUBE human gtex data_sources/gtex data_sources
#> 8707 BLADDER human gtex data_sources/gtex data_sources
#> 8708 STUDY_NA human gtex data_sources/gtex data_sources
#> 8709 BONE_MARROW human gtex data_sources/gtex data_sources
#> n_samples
#> 8678 1293
#> 8679 881
#> 8680 1398
#> 8681 942
#> 8682 195
#> 8683 159
#> 8684 173
#> 8685 482
#> 8686 1940
#> 8687 178
#> 8688 2931
#> 8689 274
#> 8690 706
#> 8691 655
#> 8692 255
#> 8693 360
#> 8694 1577
#> 8695 384
#> 8696 822
#> 8697 193
#> 8698 263
#> 8699 410
#> 8700 659
#> 8701 301
#> 8702 1048
#> 8703 251
#> 8704 98
#> 8705 19
#> 8706 9
#> 8707 21
#> 8708 133
#> 8709 204
Note that one of the projects for GTEx is STUDY_NA
, that’s because in recount3 we processed all GTEx samples, including some that had no tissue assigned and were not used by the GTEx consortium.
If you prefer to view the list of available studies interactively, you can do so with interactiveDisplayBase as shown below. You’ll want to assign the output of interactiveDisplayBase::display()
to an object so you can save your selections and use them later. By doing so, you’ll be able to select a study of interest, and save the information for later use after you hit the “send” button.
## Alternatively, interactively browse the human projects,
## select one, then hit send
selected_study <- interactiveDisplayBase::display(human_projects)
Ultimately, we need three pieces of information in order to download a specific dataset from recount3. Those are:
project_info[, c("project", "organism", "project_home")]
#> project organism project_home
#> 1838 SRP009615 human data_sources/sra
Now that we have identified our project of interest, the next step is to choose an annotation that we want to work with. The annotation files available depend on the organism. To facilitate finding the specific names we use in recount3, we have provided the function annotation_options()
.
annotation_options("human")
#> [1] "gencode_v26" "gencode_v29" "fantom6_cat" "refseq" "ercc"
#> [6] "sirv"
annotation_options("mouse")
#> [1] "gencode_v23"
The main sources are:
recount2
(Imada, Sanchez, Collado-Torres, Wilks et al., 2020)In recount3 we have provided multiple annotations, which is different from recount (recount2
R/Bioconductor package) where all files were computed using GENCODE version 25. However, in both, you might be interested in quantifying your annotation of interest, as described further below in the BigWig files section.
Once you have chosen an annotation and a project, you can now build a RangedSummarizedExperiment
object (Huber, Carey, Gentleman, Anders et al., 2015; Morgan, Obenchain, Hester, and Pagès, 2019). To do so, we recommend using the create_rse()
function as shown below for GENCODE v26 (the default annotation for human files). create_rse()
internally uses several other recount3 functions for locating the necessary raw files, downloading them, reading them, and building the RangedSummarizedExperiment
(RSE) object. create_rse()
shows several status message updates that you can silence with suppressMessages(create_rse())
if you want to.
## Create a RSE object at the gene level
rse_gene_SRP009615 <- create_rse(project_info)
#> 2023-05-07 18:01:07.986617 downloading and reading the metadata.
#> 2023-05-07 18:01:08.350625 caching file sra.sra.SRP009615.MD.gz.
#> 2023-05-07 18:01:08.563755 caching file sra.recount_project.SRP009615.MD.gz.
#> 2023-05-07 18:01:08.793937 caching file sra.recount_qc.SRP009615.MD.gz.
#> 2023-05-07 18:01:09.057151 caching file sra.recount_seq_qc.SRP009615.MD.gz.
#> 2023-05-07 18:01:09.285824 caching file sra.recount_pred.SRP009615.MD.gz.
#> 2023-05-07 18:01:09.394595 downloading and reading the feature information.
#> 2023-05-07 18:01:09.551529 caching file human.gene_sums.G026.gtf.gz.
#> 2023-05-07 18:01:10.146816 downloading and reading the counts: 12 samples across 63856 features.
#> 2023-05-07 18:01:10.286087 caching file sra.gene_sums.SRP009615.G026.gz.
#> 2023-05-07 18:01:10.503522 constructing the RangedSummarizedExperiment (rse) object.
## Explore the resulting RSE gene object
rse_gene_SRP009615
#> class: RangedSummarizedExperiment
#> dim: 63856 12
#> metadata(8): time_created recount3_version ... annotation recount3_url
#> assays(1): raw_counts
#> rownames(63856): ENSG00000278704.1 ENSG00000277400.1 ...
#> ENSG00000182484.15_PAR_Y ENSG00000227159.8_PAR_Y
#> rowData names(10): source type ... havana_gene tag
#> colnames(12): SRR387777 SRR387778 ... SRR389077 SRR389078
#> colData names(175): rail_id external_id ...
#> recount_pred.curated.cell_line BigWigURL
Because the RSE object is created at run-time in recount3, unlike the static files provided by recount for recount2
, create_rse()
stores information about how this RSE object was made under metadata()
. This information is useful in case you share the RSE object and someone else wants to be able to re-make the object with the latest data 4 This new design allows us to couple the expression data with metadata on the fly, as well as have flexibility in case we uncover an error in the files..
## Information about how this RSE object was made
metadata(rse_gene_SRP009615)
#> $time_created
#> [1] "2023-05-07 18:01:10 EDT"
#>
#> $recount3_version
#> package ondiskversion loadedversion
#> recount3 recount3 1.10.2 1.10.2
#> path
#> recount3 /tmp/RtmpPpGo4A/Rinst32e73c7c7b5162/recount3
#> loadedpath attached is_base
#> recount3 /tmp/RtmpPpGo4A/Rinst32e73c7c7b5162/recount3 TRUE FALSE
#> date source md5ok library
#> recount3 2023-05-07 Bioconductor NA /tmp/RtmpPpGo4A/Rinst32e73c7c7b5162
#>
#> $project
#> [1] "SRP009615"
#>
#> $project_home
#> [1] "data_sources/sra"
#>
#> $type
#> [1] "gene"
#>
#> $organism
#> [1] "human"
#>
#> $annotation
#> [1] "gencode_v26"
#>
#> $recount3_url
#> [1] "http://duffel.rail.bio/recount3"
The SRP009615 study was composed of 12 samples, for which we have 63,856 genes in GENCODE v26. The annotation-specific information is available through rowRanges()
as shown below with the gene_id
column used to identify genes in each of the annotations 5 Although ERCC and SIRV are technically not genes..
## Number of genes by number of samples
dim(rse_gene_SRP009615)
#> [1] 63856 12
## Information about the genes
rowRanges(rse_gene_SRP009615)
#> GRanges object with 63856 ranges and 10 metadata columns:
#> seqnames ranges strand | source
#> <Rle> <IRanges> <Rle> | <factor>
#> ENSG00000278704.1 GL000009.2 56140-58376 - | ENSEMBL
#> ENSG00000277400.1 GL000194.1 53590-115018 - | ENSEMBL
#> ENSG00000274847.1 GL000194.1 53594-115055 - | ENSEMBL
#> ENSG00000277428.1 GL000195.1 37434-37534 - | ENSEMBL
#> ENSG00000276256.1 GL000195.1 42939-49164 - | ENSEMBL
#> ... ... ... ... . ...
#> ENSG00000124334.17_PAR_Y chrY 57184101-57197337 + | HAVANA
#> ENSG00000185203.12_PAR_Y chrY 57201143-57203357 - | HAVANA
#> ENSG00000270726.6_PAR_Y chrY 57190738-57208756 + | HAVANA
#> ENSG00000182484.15_PAR_Y chrY 57207346-57212230 + | HAVANA
#> ENSG00000227159.8_PAR_Y chrY 57212184-57214397 - | HAVANA
#> type bp_length phase gene_id
#> <factor> <numeric> <integer> <character>
#> ENSG00000278704.1 gene 2237 <NA> ENSG00000278704.1
#> ENSG00000277400.1 gene 2179 <NA> ENSG00000277400.1
#> ENSG00000274847.1 gene 1599 <NA> ENSG00000274847.1
#> ENSG00000277428.1 gene 101 <NA> ENSG00000277428.1
#> ENSG00000276256.1 gene 2195 <NA> ENSG00000276256.1
#> ... ... ... ... ...
#> ENSG00000124334.17_PAR_Y gene 2504 <NA> ENSG00000124334.17_P..
#> ENSG00000185203.12_PAR_Y gene 1054 <NA> ENSG00000185203.12_P..
#> ENSG00000270726.6_PAR_Y gene 773 <NA> ENSG00000270726.6_PA..
#> ENSG00000182484.15_PAR_Y gene 4618 <NA> ENSG00000182484.15_P..
#> ENSG00000227159.8_PAR_Y gene 1306 <NA> ENSG00000227159.8_PA..
#> gene_type gene_name level
#> <character> <character> <character>
#> ENSG00000278704.1 protein_coding BX004987.1 3
#> ENSG00000277400.1 protein_coding AC145212.2 3
#> ENSG00000274847.1 protein_coding AC145212.1 3
#> ENSG00000277428.1 misc_RNA Y_RNA 3
#> ENSG00000276256.1 protein_coding AC011043.1 3
#> ... ... ... ...
#> ENSG00000124334.17_PAR_Y protein_coding IL9R 2
#> ENSG00000185203.12_PAR_Y antisense WASIR1 2
#> ENSG00000270726.6_PAR_Y processed_transcript AJ271736.10 2
#> ENSG00000182484.15_PAR_Y transcribed_unproces.. WASH6P 2
#> ENSG00000227159.8_PAR_Y unprocessed_pseudogene DDX11L16 2
#> havana_gene tag
#> <character> <character>
#> ENSG00000278704.1 <NA> <NA>
#> ENSG00000277400.1 <NA> <NA>
#> ENSG00000274847.1 <NA> <NA>
#> ENSG00000277428.1 <NA> <NA>
#> ENSG00000276256.1 <NA> <NA>
#> ... ... ...
#> ENSG00000124334.17_PAR_Y OTTHUMG00000022720.1 PAR
#> ENSG00000185203.12_PAR_Y OTTHUMG00000022676.3 PAR
#> ENSG00000270726.6_PAR_Y OTTHUMG00000184987.2 PAR
#> ENSG00000182484.15_PAR_Y OTTHUMG00000022677.5 PAR
#> ENSG00000227159.8_PAR_Y OTTHUMG00000022678.1 PAR
#> -------
#> seqinfo: 374 sequences from an unspecified genome; no seqlengths
The sample metadata provided in recount3 is much more extensive than the one in recount for the recount2
project because it’s includes for quality control metrics, predictions, and information used internally by recount3 functions such as create_rse()
. All individual metadata tables include the columns rail_id, external_id and study which are used for merging the different tables. Finally, **BigWigUrl* provides the URL for the BigWig file for the given sample.
## Sample metadata
recount3_cols <- colnames(colData(rse_gene_SRP009615))
## How many are there?
length(recount3_cols)
#> [1] 175
## View the first few ones
head(recount3_cols)
#> [1] "rail_id" "external_id" "study"
#> [4] "sra.sample_acc.x" "sra.experiment_acc" "sra.submission_acc"
## Group them by source
recount3_cols_groups <- table(gsub("\\..*", "", recount3_cols))
## Common sources and number of columns per source
recount3_cols_groups[recount3_cols_groups > 1]
#>
#> recount_pred recount_project recount_qc recount_seq_qc sra
#> 7 5 109 12 38
## Unique columns
recount3_cols_groups[recount3_cols_groups == 1]
#>
#> BigWigURL external_id rail_id study
#> 1 1 1 1
## Explore them all
recount3_cols
For studies from SRA, we can further extract the SRA attributes using expand_sra_attributes()
as shown below.
rse_gene_SRP009615_expanded <-
expand_sra_attributes(rse_gene_SRP009615)
colData(rse_gene_SRP009615_expanded)[, ncol(colData(rse_gene_SRP009615)):ncol(colData(rse_gene_SRP009615_expanded))]
#> DataFrame with 12 rows and 5 columns
#> BigWigURL sra_attribute.cells
#> <character> <character>
#> SRR387777 http://duffel.rail.b.. K562
#> SRR387778 http://duffel.rail.b.. K562
#> SRR387779 http://duffel.rail.b.. K562
#> SRR387780 http://duffel.rail.b.. K562
#> SRR389079 http://duffel.rail.b.. K562
#> ... ... ...
#> SRR389082 http://duffel.rail.b.. K562
#> SRR389083 http://duffel.rail.b.. K562
#> SRR389084 http://duffel.rail.b.. K562
#> SRR389077 http://duffel.rail.b.. K562
#> SRR389078 http://duffel.rail.b.. K562
#> sra_attribute.shRNA_expression sra_attribute.source_name
#> <character> <character>
#> SRR387777 no SL2933
#> SRR387778 yes, targeting SRF SL2934
#> SRR387779 no SL5265
#> SRR387780 yes targeting SRF SL3141
#> SRR389079 no shRNA expression SL6485
#> ... ... ...
#> SRR389082 expressing shRNA tar.. SL2592
#> SRR389083 no shRNA expression SL4337
#> SRR389084 expressing shRNA tar.. SL4326
#> SRR389077 no shRNA expression SL1584
#> SRR389078 expressing shRNA tar.. SL1583
#> sra_attribute.treatment
#> <character>
#> SRR387777 Puromycin
#> SRR387778 Puromycin, doxycycline
#> SRR387779 Puromycin
#> SRR387780 Puromycin, doxycycline
#> SRR389079 Puromycin
#> ... ...
#> SRR389082 Puromycin, doxycycline
#> SRR389083 Puromycin
#> SRR389084 Puromycin, doxycycline
#> SRR389077 Puromycin
#> SRR389078 Puromycin, doxycycline
The counts in recount3 are raw base-pair coverage counts, similar to those in recount. To further understand them, check the recountWorkflow DOI 10.12688/f1000research.12223.1. To highlight that these are raw base-pair coverage counts, they are stored in the “raw_counts” assay
assayNames(rse_gene_SRP009615)
#> [1] "raw_counts"
Using transform_counts()
you can scale the counts and assign them to the “counts” assays slot to use them in downstream packages such as DESeq2 and limma.
## Once you have your RSE object, you can transform the raw coverage
## base-pair coverage counts using transform_counts().
## For RPKM, TPM or read outputs, check the details in transform_counts().
assay(rse_gene_SRP009615, "counts") <- transform_counts(rse_gene_SRP009615)
Just like with recount for recount2
, you can transform the raw base-pair coverage counts (Collado-Torres, Nellore, and Jaffe, 2017) to read counts with compute_read_counts()
, RPKM with recount::getRPKM()
or TPM values with recount::getTPM()
. Check transform_counts()
from recount3 for more details.
recount3 provides an interface to raw files that go beyond gene counts, as well as other features you might be interested in. For instance, you might want to study expression at the exon expression level instead of gene. To do so, use the type
argument in create_rse()
as shown below.
## Create a RSE object at the exon level
rse_exon_SRP009615 <- create_rse(
proj_info,
type = "exon"
)
#> 2023-05-07 18:01:11.01252 downloading and reading the metadata.
#> 2023-05-07 18:01:11.19325 caching file sra.sra.SRP009615.MD.gz.
#> 2023-05-07 18:01:11.409575 caching file sra.recount_project.SRP009615.MD.gz.
#> 2023-05-07 18:01:11.62738 caching file sra.recount_qc.SRP009615.MD.gz.
#> 2023-05-07 18:01:11.85336 caching file sra.recount_seq_qc.SRP009615.MD.gz.
#> 2023-05-07 18:01:12.102318 caching file sra.recount_pred.SRP009615.MD.gz.
#> 2023-05-07 18:01:12.206247 downloading and reading the featu