consICA 1.2.0
This document describes the usage of the functions integrated into the package and is meant to be a reference document for the end-user.
Independent component analysis (ICA) of omics data can be used for deconvolution of biological signals and technical biases, correction of batch effects, feature engineering for classification and integration of the data [4]. The consICA package allows building robust consensus ICA-based deconvolution of the data as well as running post-hoc biological interpretation of the results. The implementation of parallel computing in the package ensures efficient analysis using modern multicore systems.
Load the package with the following command:
if (!requireNamespace("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("consICA")
library('consICA')
The usage of the package functions for an independent component deconvolution is shown for an example set of 472 samples and 2454 most variable genes from the skin cutaneous melanoma (SKCM) TCGA cohort. It stored as a SummarizedExperiment
object. In addition the data includes metadata such as age, gender, cancer subtype etc. and survival time-to-event data.
Use data as
library(SummarizedExperiment)
data("samples_data")
samples_data
#> class: SummarizedExperiment
#> dim: 2454 472
#> metadata(0):
#> assays(1): X
#> rownames(2454): A2ML1 AACSP1 ... ZNF883 ZP1
#> rowData names(0):
#> colnames(472): 3N.A9WB.Metastatic 3N.A9WC.Metastatic ...
#> Z2.AA3S.Metastatic Z2.AA3V.Metastatic
#> colData names(103): age_at_initial_pathologic_diagnosis gender ... time
#> event
# According to our terminology expression matrix X of 2454 genes and 472 samples
X <- data.frame(assay(samples_data))
dim(X)
#> [1] 2454 472
# variables described each sample
Var <- data.frame(colData(samples_data))
dim(Var)
#> [1] 472 103
colnames(Var)[1:20] # print first 20
#> [1] "age_at_initial_pathologic_diagnosis" "gender"
#> [3] "race" "Weight"
#> [5] "Height" "BMI"
#> [7] "Ethinicity" "Cancer.Type.Detailed"
#> [9] "Tumor.location.site" "ajcc_pathologic_tumor_stage"
#> [11] "Cancer.stage.M" "Cancer.stage.N"
#> [13] "Cancer.stage.T" "initial_pathologic_dx_year"
#> [15] "birth_days_to_initial_diagnosis" "Year.of.Birth"
#> [17] "age.at.last.contact" "Year.of.last.contact"
#> [19] "last_contact_days_to" "age.at.death"
# survival time and event for each sample
Sur <- data.frame(colData(samples_data))[,c("time", "event")]
Var <- Var[,which(colnames(Var) != "time" & colnames(Var) != "event")]
Independent component analysis (ICA) is an unsupervised method of signal deconvolution [3]. ICA decomposes combined gene expression matrix from multiple samples into meaningful signals in the space of genes (metagenes, S) and weights in the space of samples (weight matrix, M).