The ReactomeGSA package is a client to the web-based Reactome Analysis System. Essentially, it performs a gene set analysis using the latest version of the Reactome pathway database as a backend.
This vignette shows how the ReactomeGSA package can be used to perform a pathway analysis of cell clusters in single-cell RNA-sequencing data.
To cite this package, use
Griss J. ReactomeGSA, https://github.com/reactome/ReactomeGSA (2019)
The ReactomeGSA
package can be directly installed from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(ReactomeGSA))
BiocManager::install("ReactomeGSA")
#> Loading required package: ReactomeGSA
# install the ReactomeGSA.data package for the example data
if (!require(ReactomeGSA.data))
BiocManager::install("ReactomeGSA.data")
#> Loading required package: ReactomeGSA.data
#> Loading required package: limma
#> Loading required package: edgeR
#> Loading required package: Seurat
#> Attaching SeuratObject
For more information, see https://bioconductor.org/install/.
As an example we load single-cell RNA-sequencing data of B cells extracted from the dataset published by Jerby-Arnon et al. (Cell, 2018).
Note: This is not a complete Seurat object. To decrease the size, the object only contains gene expression values and cluster annotations.
The pathway analysis is at the very end of a scRNA-seq workflow. This means, that any Q/C was already performed, the data was normalized and cells were already clustered.
The ReactomeGSA package can now be used to get pathway-level expression values for every cell cluster. This is achieved by calculating the mean gene expression for every cluster and then submitting this data to a gene set variation analysis.
All of this is wrapped in the single analyse_sc_clusters
function.
library(ReactomeGSA)
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = TRUE)
#> Calculating average cluster expression...
#> Converting expression data to string... (This may take a moment)
#> Conversion complete
#> Submitting request to Reactome API...
#> Compressing request data...
#> Reactome Analysis submitted succesfully
#> Converting dataset Seurat...
#> Mapping identifiers...
#> Performing gene set analysis using ssGSEA
#> Analysing dataset 'Seurat' using ssGSEA
#> Retrieving result...
The resulting object is a standard ReactomeAnalysisResult
object.
gsva_result
#> ReactomeAnalysisResult object
#> Reactome Release: 84
#> Results:
#> - Seurat:
#> 1752 pathways
#> 11028 fold changes for genes
#> No Reactome visualizations available
#> ReactomeAnalysisResult
pathways
returns the pathway-level expression values per cell cluster:
pathway_expression <- pathways(gsva_result)
# simplify the column names by removing the default dataset identifier
colnames(pathway_expression) <- gsub("\\.Seurat", "", colnames(pathway_expression))
pathway_expression[1:3,]
#> Name Cluster_1 Cluster_10 Cluster_11
#> R-HSA-1059683 Interleukin-6 signaling 0.1068604 0.09743804 0.1420590
#> R-HSA-109606 Intrinsic Pathway for Apoptosis 0.1132631 0.10959578 0.1128281
#> R-HSA-109703 PKB-mediated events 0.1273525 0.05283679 0.1066424
#> Cluster_12 Cluster_13 Cluster_2 Cluster_3 Cluster_4 Cluster_5
#> R-HSA-1059683 0.11074994 0.10043978 0.1146915 0.11282191 0.11003725 0.10353440
#> R-HSA-109606 0.11912879 0.12836408 0.1081178 0.11094937 0.11310679 0.10564916
#> R-HSA-109703 0.09574043 0.07376632 0.0835158 0.08429958 0.05591271 0.04644355
#> Cluster_6 Cluster_7 Cluster_8 Cluster_9
#> R-HSA-1059683 0.09556152 0.12114396 0.13516241 0.10128279
#> R-HSA-109606 0.10996000 0.11850204 0.12124599 0.11416078
#> R-HSA-109703 0.12405405 0.07729952 0.07839453 0.01445622
A simple approach to find the most relevant pathways is to assess the maximum difference in expression for every pathway:
# find the maximum differently expressed pathway
max_difference <- do.call(rbind, apply(pathway_expression, 1, function(row) {
values <- as.numeric(row[2:length(row)])
return(data.frame(name = row[1], min = min(values), max = max(values)))
}))
max_difference$diff <- max_difference$max - max_difference$min
# sort based on the difference
max_difference <- max_difference[order(max_difference$diff, decreasing = T), ]
head(max_difference)
#> name min
#> R-HSA-350864 Regulation of thyroid hormone activity -0.4876651
#> R-HSA-8964540 Alanine metabolism -0.5061335
#> R-HSA-190374 FGFR1c and Klotho ligand binding and activation -0.3432262
#> R-HSA-140180 COX reactions -0.3451557
#> R-HSA-9024909 BDNF activates NTRK2 (TRKB) signaling -0.3744760
#> R-HSA-5263617 Metabolism of ingested MeSeO2H into MeSeH -0.1936180
#> max diff
#> R-HSA-350864 0.3757525 0.8634177
#> R-HSA-8964540 0.2563056 0.7624391
#> R-HSA-190374 0.4160889 0.7593151
#> R-HSA-140180 0.3726285 0.7177843
#> R-HSA-9024909 0.3236443 0.6981203
#> R-HSA-5263617 0.4938665 0.6874845
The ReactomeGSA package contains two functions to visualize these pathway results. The first simply plots the expression for a selected pathway:
For a better overview, the expression of multiple pathways can be shown as a heatmap using gplots
heatmap.2
function:
# Additional parameters are directly passed to gplots heatmap.2 function
plot_gsva_heatmap(gsva_result, max_pathways = 15, margins = c(6,20))
The plot_gsva_heatmap
function can also be used to only display specific pahtways:
# limit to selected B cell related pathways
relevant_pathways <- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", "R-HSA-983705", "R-HSA-5690714")
plot_gsva_heatmap(gsva_result,
pathway_ids = relevant_pathways, # limit to these pathways
margins = c(6,30), # adapt the figure margins in heatmap.2
dendrogram = "col", # only plot column dendrogram
scale = "row", # scale for each pathway
key = FALSE, # don't display the color key
lwid=c(0.1,4)) # remove the white space on the left
This analysis shows us that cluster 8 has a marked up-regulation of B Cell receptor signalling, which is linked to a co-stimulation of the CD28 family. Additionally, there is a gradient among the cluster with respect to genes releated to antigen presentation.
Therefore, we are able to further classify the observed B cell subtypes based on their pathway activity.
The pathway-level expression analysis can also be used to run a Principal Component Analysis on the samples. This is simplified through the function plot_gsva_pca
:
In this analysis, cluster 11 is a clear outlier from the other B cell subtypes and therefore might be prioritised for further evaluation.
sessionInfo()
#> R version 4.3.0 RC (2023-04-13 r84269)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ReactomeGSA.data_1.13.0 SeuratObject_4.1.3 Seurat_4.3.0
#> [4] edgeR_3.42.0 limma_3.56.0 ReactomeGSA_1.14.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_1.8.4 magrittr_2.0.3
#> [4] spatstat.utils_3.0-2 farver_2.1.1 rmarkdown_2.21
#> [7] vctrs_0.6.2 ROCR_1.0-11 spatstat.explore_3.1-0
#> [10] htmltools_0.5.5 progress_1.2.2 curl_5.0.0
#> [13] sass_0.4.5 sctransform_0.3.5 parallelly_1.35.0
#> [16] KernSmooth_2.23-20 bslib_0.4.2 htmlwidgets_1.6.2
#> [19] ica_1.0-3 plyr_1.8.8 plotly_4.10.1
#> [22] zoo_1.8-12 cachem_1.0.7 igraph_1.4.2
#> [25] mime_0.12 lifecycle_1.0.3 pkgconfig_2.0.3
#> [28] Matrix_1.5-4 R6_2.5.1 fastmap_1.1.1
#> [31] fitdistrplus_1.1-11 future_1.32.0 shiny_1.7.4
#> [34] digest_0.6.31 colorspace_2.1-0 patchwork_1.1.2
#> [37] tensor_1.5 irlba_2.3.5.1 labeling_0.4.2
#> [40] progressr_0.13.0 fansi_1.0.4 spatstat.sparse_3.0-1
#> [43] httr_1.4.5 polyclip_1.10-4 abind_1.4-5
#> [46] compiler_4.3.0 withr_2.5.0 highr_0.10
#> [49] gplots_3.1.3 MASS_7.3-59 gtools_3.9.4
#> [52] caTools_1.18.2 tools_4.3.0 lmtest_0.9-40
#> [55] httpuv_1.6.9 future.apply_1.10.0 goftest_1.2-3
#> [58] glue_1.6.2 nlme_3.1-162 promises_1.2.0.1
#> [61] grid_4.3.0 Rtsne_0.16 cluster_2.1.4
#> [64] reshape2_1.4.4 generics_0.1.3 gtable_0.3.3
#> [67] spatstat.data_3.0-1 tidyr_1.3.0 data.table_1.14.8
#> [70] hms_1.1.3 sp_1.6-0 utf8_1.2.3
#> [73] spatstat.geom_3.1-0 RcppAnnoy_0.0.20 ggrepel_0.9.3
#> [76] RANN_2.6.1 pillar_1.9.0 stringr_1.5.0
#> [79] later_1.3.0 splines_4.3.0 dplyr_1.1.2
#> [82] lattice_0.21-8 survival_3.5-5 deldir_1.0-6
#> [85] tidyselect_1.2.0 locfit_1.5-9.7 miniUI_0.1.1.1
#> [88] pbapply_1.7-0 knitr_1.42 gridExtra_2.3
#> [91] scattermore_0.8 xfun_0.39 matrixStats_0.63.0
#> [94] stringi_1.7.12 lazyeval_0.2.2 yaml_2.3.7
#> [97] evaluate_0.20 codetools_0.2-19 tibble_3.2.1
#> [100] BiocManager_1.30.20 cli_3.6.1 uwot_0.1.14
#> [103] xtable_1.8-4 reticulate_1.28 munsell_0.5.0
#> [106] jquerylib_0.1.4 Rcpp_1.0.10 globals_0.16.2
#> [109] spatstat.random_3.1-4 png_0.1-8 parallel_4.3.0
#> [112] ellipsis_0.3.2 ggplot2_3.4.2 prettyunits_1.1.1
#> [115] bitops_1.0-7 listenv_0.9.0 viridisLite_0.4.1
#> [118] scales_1.2.1 ggridges_0.5.4 leiden_0.4.3
#> [121] purrr_1.0.1 crayon_1.5.2 rlang_1.1.0
#> [124] cowplot_1.1.1