require(IgGeneUsage)
require(knitr)
require(ggplot2)
require(ggforce)
require(gridExtra)
require(ggrepel)
require(rstan)
require(reshape2)
rstan_options(auto_write = TRUE)
Decoding the properties of immune repertoires is key in understanding the response of adaptive immunity to challenges such as viral infection. One important property is biases in immunoglobulin (Ig) gene usage between biological conditions (e.g. healthy vs tumor). Yet, most analyses for differential gene usage (DGU) are performed qualitatively, or with inadequate statistical methods. Here we introduce IgGeneUsage, a computational tool for DGU analysis.
The main input of IgGeneUsage is a data.frame that has the following 4 columns:
The sum of all gene usage counts (column 4) for a given repertoire is equal to the repertoire size (number of cells in the repertoire).
IgGeneUsage transforms the provided input in the following way. Given \(R\) repertoires, each having \(G\) genes, IgGeneUsage generates a gene usage matrix \(Y^{R \times G}\). Row sums in \(Y\) define the total usage in each repertoire (\(N\)). The design variable \(X\) is set to \(X = 1\) for repertoires that belong to the first condition, and \(X = -1\) otherwise.
For the analysis of DGU between two biological conditions, we designed the following Bayesian model (\(M\)) for zero-inflated beta-binomial regression. This model can fit over-dispersed gene usage data. The immune repertoire data is also not exhaustive, which leads to misdetection of genes that are systematically rearranged at low probability. The zero-inflated component of our model accounts for this:
\[\begin{align} p(Y_{ij} \mid M) = \begin{cases} \kappa + (1 - \kappa) \operatorname{BB}\left(0 \mid N_{i}, \theta_{ij}, \phi \right), & \text{if $Y_{ij}$ = 0} \\ (1 - \kappa) \operatorname{BB}\left(Y_{ij} \mid N_{i}, \theta_{ij}, \phi \right), & \text{if $Y_{ij}$ > 0} \end{cases}\\ \theta_{ij}=\operatorname{logit^{-1}}\left(\alpha_{j}+\beta_{ij}X_{i}\right)\\ \beta_{ij}\sim\operatorname{Normal}\left(\gamma_{j},\gamma_{\sigma} \right)\\ \gamma_{j}\sim\operatorname{Normal}\left(\hat{\gamma},\hat{\gamma}_{\sigma} \right) \\ \alpha_{j}\sim\operatorname{Normal}\left(\hat{\alpha},\hat{\alpha}_{\sigma} \right) \\ \hat{\gamma} \sim \operatorname{Normal}\left(0, 5\right) \\ \hat{\alpha} \sim \operatorname{Normal}\left(0, 10\right) \\ \gamma_{\sigma}, \hat{\gamma}_{\sigma}, \hat{\alpha}_{\sigma} \sim \operatorname{Cauchy^{+}}\left(0, 1\right) \\ \phi \sim \operatorname{Exponential}\left(\tau\right) \\ \tau \sim \operatorname{Gamma}\left(3, 0.1\right) \\ \kappa \sim \operatorname{Beta}\left(1, 3\right) \end{align}\]
Model \(M\) legend:
In the output of IgGeneUsage, we report the mean effect size (\(\gamma\)) and its 95% highest density interval (HDI). Genes with \(\gamma \neq 0\) (e.g. if 95% HDI of \(\gamma\) excludes 0) are most likely to experience differential usage. Additionally, we report the probability of differential gene usage (\(\pi\)): \[\begin{align} \pi = 2 \cdot \max\left(\int_{\gamma = -\infty}^{0} p(\gamma)\mathrm{d}\gamma, \int_{\gamma = 0}^{\infty} p(\gamma)\mathrm{d}\gamma\right) - 1 \end{align}\] with \(\pi = 1\) for genes with strong differential usage, and \(\pi = 0\) for genes with negligible differential gene usage. Both metrics are computed based on the posterior distribution of \(\gamma\), and are thus related. We find \(\pi\) slightly easier to interpret.
\[\begin{align} p(Y_{ij} \mid M) = \begin{cases} \kappa + (1 - \kappa) \operatorname{BB}\left(0 \mid N_{i}, \theta_{ij}, \phi \right), & \text{if $Y_{ij}$ = 0} \\ (1 - \kappa) \operatorname{BB}\left(Y_{ij} \mid N_{i}, \theta_{ij}, \phi \right), & \text{if $Y_{ij}$ > 0} \end{cases}\\ \theta_{ij}=\operatorname{logit^{-1}}\left(\alpha_{ij}+\beta_{ij}X_{i}\right)\\ \alpha_{ij}\sim\operatorname{Normal}\left(\delta_{j},\delta_{\sigma} \right)\\ \beta_{ij}\sim\operatorname{Normal}\left(\gamma_{j},\gamma_{\sigma} \right)\\ \gamma_{j}\sim\operatorname{Normal}\left(0.0,\hat{\gamma}_{\sigma} \right) \\ \delta_{j}\sim\operatorname{Normal}\left(0.0,\hat{\delta}_{\sigma} \right) \\ \gamma_{\sigma}, \hat{\gamma}_{\sigma}, \delta_{\sigma}, \hat{\delta}_{\sigma} \sim \operatorname{Cauchy^{+}}\left(0, 1\right) \\ \phi \sim \operatorname{Exponential}\left(\tau\right) \\ \tau \sim \operatorname{Gamma}\left(3, 0.1\right) \\ \kappa \sim \operatorname{Beta}\left(1, 3\right) \end{align}\]
IgGeneUsage has a couple of built-in Ig gene usage datasets. Some were obtained from studies and others were simulated.
Lets look into the simulated dataset d_zibb
. This dataset was generated by a
zero-inflated beta-binomial (ZIBB) model, and IgGeneUsage
was designed to fit ZIBB-distributed data.
data("d_zibb", package = "IgGeneUsage")
knitr::kable(head(d_zibb))
sample_id | condition | gene_name | gene_usage_count |
---|---|---|---|
S1 | C1 | G1 | 25 |
S1 | C1 | G2 | 123 |
S1 | C1 | G3 | 29 |
S1 | C1 | G4 | 442 |
S1 | C1 | G5 | 60 |
S1 | C1 | G6 | 106 |
We can also visualize d_zibb
with ggplot:
ggplot(data = d_zibb)+
geom_point(aes(x = gene_name, y = gene_usage_count, col = condition),
position = position_dodge(width = .7), shape = 21)+
theme_bw(base_size = 11)+
ylab(label = "Gene usage")+
xlab(label = '')+
theme(legend.position = "top")+
theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.4))
As main input IgGeneUsage uses a data.frame formatted as
d_zibb
. Other input parameters allow you to configure specific settings
of the rstan sampler.
In this example we analyze d_zibb
with 3 MCMC chains, 1500 iterations
each including 500 warm-ups using a single CPU core (Hint: for parallel
chain execution set parameter mcmc.cores
= 3). We report for each model
parameter its mean and 95% highest density interval (HDIs).
Important remark: you should run DGU analyses using default IgGeneUsage parameters. If warnings or errors are reported with regard to the MCMC sampling, please consult the Stan manual1 https://mc-stan.org/misc/warnings.html and adjust the inputs accordingly. If the warnings persist, please submit an issue with a reproducible script at the Bioconductor support site or on Github2 https://github.com/snaketron/IgGeneUsage/issues.
M <- DGU(usage.data = d_zibb, # input data
mcmc.warmup = 500, # how many MCMC warm-ups per chain (default: 500)
mcmc.steps = 1500, # how many MCMC steps per chain (default: 1,500)
mcmc.chains = 3, # how many MCMC chain to run (default: 4)
mcmc.cores = 1, # how many PC cores to use? (e.g. parallel chains)
hdi.level = 0.95, # highest density interval level (de fault: 0.95)
adapt.delta = 0.8, # MCMC target acceptance rate (default: 0.95)
max.treedepth = 10) # tree depth evaluated at each step (default: 12)
FALSE
FALSE SAMPLING FOR MODEL 'zibb' NOW (CHAIN 1).
FALSE Chain 1:
FALSE Chain 1: Gradient evaluation took 0.000237 seconds
FALSE Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.37 seconds.
FALSE Chain 1: Adjust your expectations accordingly!
FALSE Chain 1:
FALSE Chain 1:
FALSE Chain 1: Iteration: 1 / 1500 [ 0%] (Warmup)
FALSE Chain 1: Iteration: 250 / 1500 [ 16%] (Warmup)
FALSE Chain 1: Iteration: 500 / 1500 [ 33%] (Warmup)
FALSE Chain 1: Iteration: 501 / 1500 [ 33%] (Sampling)
FALSE Chain 1: Iteration: 750 / 1500 [ 50%] (Sampling)
FALSE Chain 1: Iteration: 1000 / 1500 [ 66%] (Sampling)
FALSE Chain 1: Iteration: 1250 / 1500 [ 83%] (Sampling)
FALSE Chain 1: Iteration: 1500 / 1500 [100%] (Sampling)
FALSE Chain 1:
FALSE Chain 1: Elapsed Time: 12.4771 seconds (Warm-up)
FALSE Chain 1: 7.8561 seconds (Sampling)
FALSE Chain 1: 20.3332 seconds (Total)
FALSE Chain 1:
FALSE
FALSE SAMPLING FOR MODEL 'zibb' NOW (CHAIN 2).
FALSE Chain 2:
FALSE Chain 2: Gradient evaluation took 0.000203 seconds
FALSE Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 2.03 seconds.
FALSE Chain 2: Adjust your expectations accordingly!
FALSE Chain 2:
FALSE Chain 2:
FALSE Chain 2: Iteration: 1 / 1500 [ 0%] (Warmup)
FALSE Chain 2: Iteration: 250 / 1500 [ 16%] (Warmup)
FALSE Chain 2: Iteration: 500 / 1500 [ 33%] (Warmup)
FALSE Chain 2: Iteration: 501 / 1500 [ 33%] (Sampling)
FALSE Chain 2: Iteration: 750 / 1500 [ 50%] (Sampling)
FALSE Chain 2: Iteration: 1000 / 1500 [ 66%] (Sampling)
FALSE Chain 2: Iteration: 1250 / 1500 [ 83%] (Sampling)
FALSE Chain 2: Iteration: 1500 / 1500 [100%] (Sampling)
FALSE Chain 2:
FALSE Chain 2: Elapsed Time: 11.5601 seconds (Warm-up)
FALSE Chain 2: 14.2444 seconds (Sampling)
FALSE Chain 2: 25.8045 seconds (Total)
FALSE Chain 2:
FALSE
FALSE SAMPLING FOR MODEL 'zibb' NOW (CHAIN 3).
FALSE Chain 3:
FALSE Chain 3: Gradient evaluation took 0.000214 seconds
FALSE Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 2.14 seconds.
FALSE Chain 3: Adjust your expectations accordingly!
FALSE Chain 3:
FALSE Chain 3:
FALSE Chain 3: Iteration: 1 / 1500 [ 0%] (Warmup)
FALSE Chain 3: Iteration: 250 / 1500 [ 16%] (Warmup)
FALSE Chain 3: Iteration: 500 / 1500 [ 33%] (Warmup)
FALSE Chain 3: Iteration: 501 / 1500 [ 33%] (Sampling)
FALSE Chain 3: Iteration: 750 / 1500 [ 50%] (Sampling)
FALSE Chain 3: Iteration: 1000 / 1500 [ 66%] (Sampling)
FALSE Chain 3: Iteration: 1250 / 1500 [ 83%] (Sampling)
FALSE Chain 3: Iteration: 1500 / 1500 [100%] (Sampling)
FALSE Chain 3:
FALSE Chain 3: Elapsed Time: 11.8936 seconds (Warm-up)
FALSE Chain 3: 7.29312 seconds (Sampling)
FALSE Chain 3: 19.1867 seconds (Total)
FALSE Chain 3:
The following objects are provided as part of the output of DGU:
glm.summary
(main results of IgGeneUsage): quantitative
DGU summarytest.summary
: quantitative DGU summary from frequentist methods:
Welch’s t-test (T-test) and Wilcoxon signed-rank test (U-test)glm
: rstan (‘stanfit’) object of the fitted model \(rightarrow\) used for
model checks (see section ‘Model checking’)ppc.data
: posterior predictive checks data (see section ‘Model checking’)summary(M)
FALSE Length Class Mode
FALSE glm.summary 9 data.frame list
FALSE test.summary 9 data.frame list
FALSE glm 1 stanfit S4
FALSE ppc.data 2 -none- list
FALSE usage.data 9 -none- list
Check your model fit. For this, you can use the object glm.
rstan::check_hmc_diagnostics(M$glm)
FALSE
FALSE Divergences:
FALSE
FALSE Tree depth:
FALSE
FALSE Energy:
gridExtra::grid.arrange(rstan::stan_rhat(object = M$glm),
rstan::stan_ess(object = M$glm),
nrow = 1)
The model used by IgGeneUsage is generative, i.e. with the model we can generate usage of each Ig gene in a given repertoire (y-axis). Error bars show 95% HDI of mean posterior prediction. The predictions can be compared with the observed data (x-axis). For points near the diagonal \(\rightarrow\) accurate prediction.
ggplot(data = M$ppc.data$ppc.repertoire)+
facet_wrap(facets = ~sample_name, nrow = 3)+
geom_abline(intercept = 0, slope = 1, linetype = "dashed", col = "darkgray")+
geom_errorbar(aes(x = observed_count, y = ppc_mean_count,
ymin = ppc_L_count, ymax = ppc_H_count), col = "darkgray")+
geom_point(aes(x = observed_count, y = ppc_mean_count,
fill = condition), shape = 21, size = 1)+
theme_bw(base_size = 11)+
theme(legend.position = "top")+
scale_x_log10()+
scale_y_log10()+
xlab(label = "Observed usage [counts]")+
ylab(label = "Predicted usage [counts]")+
annotation_logticks(base = 10, sides = "lb")
Prediction of generalized gene usage within a biological condition is also possible. We show the predictions (y-axis) of the model, and compare them against the observed mean usage (x-axis). If the points are near the diagonal \(\rightarrow\) accurate prediction. Errors are 95% HDIs of the mean.
ggplot(data = M$ppc.data$ppc.gene)+
geom_abline(intercept = 0, slope = 1, linetype = "dashed", col = "darkgray")+
geom_errorbar(aes(x = observed_prop*100, ymin = ppc_L_prop*100,
ymax = ppc_H_prop*100), col = "darkgray")+
geom_point(aes(x = observed_prop*100, y = ppc_mean_prop*100,
col = condition), size = 2)+
theme_bw(base_size = 11)+
theme(legend.position = "top")+
xlab(label = "Observed usage [%]")+
ylab(label = "Predicted usage [%]")+
scale_x_log10()+
scale_y_log10()+
annotation_logticks(base = 10, sides = "lb")
Each row of glm.summary
summarizes the degree of DGU observed for specific
Igs. Two metrics are reported:
es
(also referred to as \gamma
): effect size encoded in(parameter
\(\gamma\) from model \(M\)) on DGU, where contrast
gives the direction of
the effect (e.g. tumor - healthy or healthy - tumor)pmax
(also referred to as \pi
): probability of DGU (parameter \(\pi\)
from model \(M\))For es
we also have the mean, median standard error (se), standard
deviation (sd), L (low bound of 95% HDI), H (high bound of 95% HDI)
kable(x = head(M$glm.summary), row.names = FALSE, digits = 3)
es_mean | es_mean_se | es_sd | es_median | es_L | es_H | contrast | pmax | gene_name |
---|---|---|---|---|---|---|---|---|
0.217 | 0.005 | 0.254 | 0.212 | -0.275 | 0.717 | C2 - C1 | 0.611 | G1 |
0.017 | 0.008 | 0.477 | 0.021 | -0.941 | 0.958 | C2 - C1 | 0.033 | G10 |
0.295 | 0.003 | 0.169 | 0.293 | -0.041 | 0.629 | C2 - C1 | 0.919 | G11 |
0.096 | 0.003 | 0.202 | 0.091 | -0.296 | 0.505 | C2 - C1 | 0.373 | G12 |
-0.212 | 0.008 | 0.486 | -0.174 | -1.254 | 0.656 | C2 - C1 | 0.337 | G13 |
0.127 | 0.004 | 0.201 | 0.126 | -0.264 | 0.542 | C2 - C1 | 0.493 | G14 |
We know that the values of \gamma
and \pi
are related to each other.
Lets visualize them for all genes (shown as a point). Names are shown for
genes associated with \(\pi \geq 0.9\). Dashed horizontal line represents
null-effect (\(\gamma = 0\)).
Notice that the gene with \(\pi \approx 1\) also has an effect size whose 95% HDI (error bar) does not overlap the null-effect. The genes with high degree of differential usage are easy to detect with this figure.
# format data
stats <- M$glm.summary
stats <- stats[order(abs(stats$es_mean), decreasing = FALSE), ]
stats$gene_fac <- factor(x = stats$gene_name, levels = stats$gene_name)
stats <- merge(x = stats, y = M$test.summary, by = "gene_name")
ggplot(data = stats)+
geom_hline(yintercept = 0, linetype = "dashed", col = "gray")+
geom_errorbar(aes(x = pmax, y = es_mean, ymin = es_L, ymax = es_H),
col = "darkgray")+
geom_point(aes(x = pmax, y = es_mean), col = "darkgray")+
geom_text_repel(data = stats[stats$pmax >= 0.9, ],
aes(x = pmax, y = es_mean, label = gene_fac),
min.segment.length = 0, size = 2.75)+
theme_bw(base_size = 11)+
xlab(label = expression(pi))+
xlim(c(0, 1))
Lets visualize the observed data of the genes with high probability of differential gene usage (\(\pi \geq 0.9\)). Here we show the gene usage in %.
promising.genes <- stats$gene_name[stats$pmax >= 0.9]
ppc.gene <- M$ppc.data$ppc.gene
ppc.gene <- ppc.gene[ppc.gene$gene_name %in% promising.genes, ]
ppc.rep <- M$ppc.data$ppc.repertoire
ppc.rep <- ppc.rep[ppc.rep$gene_name %in% promising.genes, ]
ggplot()+
geom_point(data = ppc.rep,
aes(x = gene_name, y = observed_prop*100, col = condition),
size = 1.5, fill = "black",
position = position_jitterdodge(jitter.width = 0.1,
jitter.height = 0,
dodge.width = 0.35))+
geom_errorbar(data = ppc.gene,
aes(x = gene_name, ymin = ppc_L_prop*100,
ymax = ppc_H_prop*100, group = condition),
position = position_dodge(width = 0.35), width = 0.15)+
theme_bw(base_size = 11)+
theme(legend.position = "top")+
ylab(label = "Usage [%]")+
xlab(label = '')
Lets also visualize the gene usage frequencies. Point size represents total usage in repertoire.
ggplot()+
geom_point(data = ppc.rep,
aes(x = gene_name, y = observed_count, col = condition),
size = 1.5, fill = "black",
position = position_jitterdodge(jitter.width = 0.1,
jitter.height = 0,
dodge.width = 0.35))+
theme_bw(base_size = 11)+
theme(legend.position = "top")+
ylab(label = "Usage count")+
xlab(label = '')
Despite the fact that the data is not normally distributed (see first figure). Nevertheless, we performed DGU analysis with the T-test, and compare \(\pi\) with the FDR corrected P-values (-log10 scale) from the T-test:
ggplot()+
geom_hline(yintercept = c(-log10(0.05), -log10(0.01)),
linetype = "dashed", col = "darkgray")+
geom_point(data = stats, col = "red", size = 2,
aes(x = pmax, y = -log10(t.test.fdr.pvalue)))+
geom_text_repel(data = stats[stats$pmax >= 0.5, ],
aes(x = pmax, y = -log10(t.test.fdr.pvalue),
label = gene_name), size = 2.75,
min.segment.length = 0)+
xlim(0, 1)+
ylab(label = "-log10 (P-value) from T-test [FDR corrected]")+
xlab(label = expression(pi))+
theme_bw(base_size = 11)+
theme(legend.position = "top")+
scale_color_discrete(name = '')
The nonparametric U-test can also be used for the analysis of DGU. The U-test assumes data with equal shape in both groups (also not met by our data). We compare \(\pi\) with the FDR corrected P-values (-log10 scale) from the U-test:
ggplot()+
geom_hline(yintercept = c(-log10(0.05), -log10(0.01)),
linetype = "dashed", col = "darkgray")+
geom_point(data = stats, col = "red", size = 2,
aes(x = pmax, y = -log10(u.test.fdr.pvalue)))+
geom_text_repel(data = stats[stats$pmax >= 0.5, ],
aes(x = pmax, y = -log10(u.test.fdr.pvalue),
label = gene_name), size = 2.75,
min.segment.length = 0)+
xlim(0, 1)+
ylab(label = "-log10 (P-value) from U-test [FDR corrected]")+
xlab(label = expression(pi))+
theme_bw(base_size = 11)+
theme(legend.position = "top")+
scale_color_discrete(name = '')
# Session
sessionInfo()
FALSE R version 4.3.0 RC (2023-04-13 r84269)
FALSE Platform: x86_64-pc-linux-gnu (64-bit)
FALSE Running under: Ubuntu 22.04.2 LTS
FALSE
FALSE Matrix products: default
FALSE BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
FALSE LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
FALSE
FALSE locale:
FALSE [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
FALSE [3] LC_TIME=en_GB LC_COLLATE=C
FALSE [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
FALSE [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
FALSE [9] LC_ADDRESS=C LC_TELEPHONE=C
FALSE [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
FALSE
FALSE time zone: America/New_York
FALSE tzcode source: system (glibc)
FALSE
FALSE attached base packages:
FALSE [1] stats graphics grDevices utils datasets methods base
FALSE
FALSE other attached packages:
FALSE [1] reshape2_1.4.4 rstan_2.21.8 StanHeaders_2.21.0-7
FALSE [4] ggrepel_0.9.3 gridExtra_2.3 ggforce_0.4.1
FALSE [7] ggplot2_3.4.2 knitr_1.42 IgGeneUsage_1.14.0
FALSE [10] BiocStyle_2.28.0
FALSE
FALSE loaded via a namespace (and not attached):
FALSE [1] tidyselect_1.2.0 dplyr_1.1.2
FALSE [3] farver_2.1.1 loo_2.6.0
FALSE [5] bitops_1.0-7 fastmap_1.1.1
FALSE [7] RCurl_1.98-1.12 tweenr_2.0.2
FALSE [9] digest_0.6.31 lifecycle_1.0.3
FALSE [11] processx_3.8.1 magrittr_2.0.3
FALSE [13] compiler_4.3.0 rlang_1.1.0
FALSE [15] sass_0.4.5 tools_4.3.0
FALSE [17] utf8_1.2.3 yaml_2.3.7
FALSE [19] prettyunits_1.1.1 labeling_0.4.2
FALSE [21] pkgbuild_1.4.0 DelayedArray_0.26.0
FALSE [23] plyr_1.8.8 withr_2.5.0
FALSE [25] BiocGenerics_0.46.0 grid_4.3.0
FALSE [27] polyclip_1.10-4 stats4_4.3.0
FALSE [29] fansi_1.0.4 colorspace_2.1-0
FALSE [31] inline_0.3.19 scales_1.2.1
FALSE [33] MASS_7.3-59 SummarizedExperiment_1.30.0
FALSE [35] cli_3.6.1 rmarkdown_2.21
FALSE [37] crayon_1.5.2 generics_0.1.3
FALSE [39] RcppParallel_5.1.7 cachem_1.0.7
FALSE [41] stringr_1.5.0 zlibbioc_1.46.0
FALSE [43] parallel_4.3.0 BiocManager_1.30.20
FALSE [45] XVector_0.40.0 matrixStats_0.63.0
FALSE [47] vctrs_0.6.2 Matrix_1.5-4
FALSE [49] jsonlite_1.8.4 bookdown_0.33
FALSE [51] callr_3.7.3 IRanges_2.34.0
FALSE [53] S4Vectors_0.38.0 magick_2.7.4
FALSE [55] jquerylib_0.1.4 glue_1.6.2
FALSE [57] codetools_0.2-19 ps_1.7.5
FALSE [59] stringi_1.7.12 gtable_0.3.3
FALSE [61] GenomeInfoDb_1.36.0 GenomicRanges_1.52.0
FALSE [63] munsell_0.5.0 tibble_3.2.1
FALSE [65] pillar_1.9.0 htmltools_0.5.5
FALSE [67] GenomeInfoDbData_1.2.10 R6_2.5.1
FALSE [69] evaluate_0.20 lattice_0.21-8
FALSE [71] Biobase_2.60.0 highr_0.10
FALSE [73] bslib_0.4.2 rstantools_2.3.1
FALSE [75] Rcpp_1.0.10 xfun_0.39
FALSE [77] MatrixGenerics_1.12.0 pkgconfig_2.0.3