ISAnalytics 1.10.2
ISAnalytics is an R package developed to analyze gene therapy vector insertion sites data identified from genomics next generation sequencing reads for clonal tracking studies.
In this vignette we will explain how to properly setup the workflow and the first steps of data import and data cleaning.
This section demonstrates how to properly setup your workflow
with ISAnalytics
using the “dynamic vars” system.
From ISAnalytics 1.5.4
onwards, a new system here referred to as
“dynamic vars” has been implemented to improve the flexibility of the package,
by allowing multiple input formats based on user needs rather than enforcing
hard-coded names and structures. In this way, users that do not follow the
standard name conventions used by the package have to put minimal effort
into making their inputs compliant to the package requirements.
There are 5 main categories of inputs you can customize:
The general approach is based on the specification of predefined tags and their associated information in the form of simple data frames with a standard structure, namely:
names | types | transform | flag | tag |
---|---|---|---|---|
<name of the column> |
<type> |
<a lambda or NULL> |
<flag> |
<tag> |
where
names
contains the name of the column as a charactertypes
contains the type of the column. Type should be expressed as a
string and should be in one of the allowed types
char
for character (strings)int
for integerslogi
for logical values (TRUE / FALSE)numeric
for numeric valuesfactor
for factorsdate
for generic date format - note that functions that
need to read and parse files will try to guess the format and parsing
may failISAnalytics::date_formats()
to view the accepted formatstransform
: a purrr-style lambda that is applied immediately after importing.
This is useful to operate simple transformations like removing unwanted
characters or rounding to a certain precision. Please note that these lambdas
need to be functions that accept a vector as input and only operate a
transformation, aka they output a vector of the same length as the
input. For more complicated applications that may require the value of other
columns, appropriate functions should be manually applied post-import.flag
: as of now, it should be set either to required
or optional
-
some functions internally check for only required tags presence and if those
are missing from inputs they fail, signaling failure to the usertag
: a specific tag expressed as a string - see Section 2.2For each category of dynamic vars there are 3 functions:
Setters will take in input the new variables, validate and eventually change the lookup table. If validation fails an error will be thrown instead, inviting the user to review the inputs. Moreover, if some of the critical tags for the category are missing, a warning appears, with a list of the missing ones.
Let’s take a look at some examples.
On package loading, all lookup tables are set to default values. For example, for mandatory IS vars we have:
mandatory_IS_vars(TRUE)
#> # A tibble: 3 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chr char <NULL> required chromosome
#> 2 integration_locus int <NULL> required locus
#> 3 strand char <NULL> required is_strand
Let’s suppose our matrices follow a different standard, and integration events are characterized by 5 fields, like so (the example contains random data):
chrom | position | strand | gap | junction |
---|---|---|---|---|
“chr1” | 342543 | “+” | 100 | 50 |
… | … | … | … | … |
To make this work with ISAnalytics functions, we need to compile the lookup table like this:
new_mand_vars <- tibble::tribble(
~names, ~types, ~transform, ~flag, ~tag,
"chrom", "char", ~ stringr::str_replace_all(.x, "chr", ""), "required",
"chromosome",
"position", "int", NULL, "required", "locus",
"strand", "char", NULL, "required", "is_strand",
"gap", "int", NULL, "required", NA_character_,
"junction", "int", NULL, "required", NA_character_
)
Notice that we have specified a transformation for the “chromosome” tag: in this case we would like to have only the number of the chromosome without the prefix “chr” - this lambda will get executed immediately after import.
To set the new variables simply do:
set_mandatory_IS_vars(new_mand_vars)
#> Mandatory IS vars successfully changed
mandatory_IS_vars(TRUE)
#> # A tibble: 5 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chrom char <formula> required chromosome
#> 2 position int <NULL> required locus
#> 3 strand char <NULL> required is_strand
#> 4 gap int <NULL> required <NA>
#> 5 junction int <NULL> required <NA>
If you don’t specify a critical tag, a warning message is displayed:
new_mand_vars[1, ]$tag <- NA_character_
set_mandatory_IS_vars(new_mand_vars)
#> Warning: Warning: important tags missing
#> ℹ Some tags are required for proper execution of some functions. If these tags are not provided, execution of dependent functions might fail. Review your inputs carefully.
#> ℹ Missing tags: chromosome
#> ℹ To see where these are involved type `inspect_tags(c('chromosome'))`
#> Mandatory IS vars successfully changed
mandatory_IS_vars(TRUE)
#> # A tibble: 5 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chrom char <formula> required <NA>
#> 2 position int <NULL> required locus
#> 3 strand char <NULL> required is_strand
#> 4 gap int <NULL> required <NA>
#> 5 junction int <NULL> required <NA>
If you change your mind and want to go back to defaults:
reset_mandatory_IS_vars()
#> Mandatory IS vars reset to default
mandatory_IS_vars(TRUE)
#> # A tibble: 3 × 5
#> names types transform flag tag
#> <chr> <chr> <list> <chr> <chr>
#> 1 chr char <NULL> required chromosome
#> 2 integration_locus int <NULL> required locus
#> 3 strand char <NULL> required is_strand
The principle is the same for annotation IS vars, association file columns and VISPA2 stats specs. Here is a summary of the functions for each:
mandatory_IS_vars()
, set_mandatory_IS_vars()
,
reset_mandatory_IS_vars()
annotation_IS_vars()
, set_annotation_IS_vars()
,
reset_annotation_IS_vars()
association_file_columns()
,
set_af_columns_def()
, reset_af_columns_def()
iss_stats_specs()
, set_iss_stats_specs()
,
reset_iss_stats_specs
Matrix files suffixes work slightly different:
matrix_file_suffixes()
#> # A tibble: 10 × 3
#> quantification matrix_type file_suffix
#> <chr> <chr> <chr>
#> 1 seqCount annotated seqCount_matrix.no0.annotated.tsv.gz
#> 2 seqCount not_annotated seqCount_matrix.tsv.gz
#> 3 fragmentEstimate annotated fragmentEstimate_matrix.no0.annotated.tsv.gz
#> 4 fragmentEstimate not_annotated fragmentEstimate_matrix.tsv.gz
#> 5 barcodeCount annotated barcodeCount_matrix.no0.annotated.tsv.gz
#> 6 barcodeCount not_annotated barcodeCount_matrix.tsv.gz
#> 7 cellCount annotated cellCount_matrix.no0.annotated.tsv.gz
#> 8 cellCount not_annotated cellCount_matrix.tsv.gz
#> 9 ShsCount annotated ShsCount_matrix.no0.annotated.tsv.gz
#> 10 ShsCount not_annotated ShsCount_matrix.tsv.gz
To change this lookup table use the function set_matrix_file_suffixes()
:
the function will ask to specify a suffix for each quantification and for
both annotated and not annotated versions. These suffixes are used in the
automated matrix import function when scanning the file system.
To reset all lookup tables to their default configurations you can also
use the function reset_dyn_vars_config()
, which reverts all changes.
No, if you frequently have to work with a non-standard settings profile,
you can use the functions export_ISA_settings()
and import_ISA_settings()
:
these functions allow the import/export of setting profiles in *.json format.
Once you set your variables for the first time through the procedure described before, simply call the export function and all will be saved to a json file, which can then be imported for the next workflow.
From ISAnalytics 1.7.4
, functions that make use of parallel workers or
process long tasks report progress via the functions offered by
progressr. To enable progress bars
for all functions in ISAnalytics do
enable_progress_bars()
before calling other functions.
For customizing the appearance of the progress bar please refer to progressr
documentation.
ISAnalytics
import functions familyIn this section we’re going to explain more in detail how functions of the import family should be used, the most common workflows to follow and more.
The vast majority of the functions included in this package is designed to work in combination with VISPA2 pipeline (Giulio Spinozzi Andrea Calabria, 2017). If you don’t know what it is, we strongly recommend you to take a look at these links:
VISPA2 produces a standard file system structure starting from a folder you specify as your workbench or root. The structure always follows this schema:
Most of the functions implemented expect a standard file system structure as the one described above.
We call an “integration matrix” a tabular structure characterized by:
mandatory_IS_vars()
. By default
they’re set to chr
, integration_locus
and strand
annotation_IS_vars()
.
By default they’re set to GeneName
and GeneStrand
#> # A tibble: 3 × 8
#> chr integration_locus strand GeneName GeneStrand exp1 exp2 exp3
#> <chr> <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 1 12324 + NFATC3 + 4553 5345 NA
#> 2 6 657532 + LOC100507487 + 76 545 5
#> 3 7 657532 + EDIL3 - NA 56 NA
The package uses a more compact form of these matrices, limiting the amount of NA values and optimizing time and memory consumption. For more info on this take a look at: Tidy data
While integration matrices contain the actual data, we also need associated
sample metadata to perform the vast majority of the analyses.
ISAnalytics
expects the metadata to be contained in a so called
“association file”, which is a simple tabular file.
To generate a blank association file you can use the function
generate_blank_association_file
. You can also view the standard
column names with association_file_columns()
.
To import metadata we use import_association_file()
. This function is not
only responsible for reading the file into the R environment as a data frame,
but it is capable to perform a file system alignment operation,
that is, for each project and pool contained in the file, it scans
the file system starting from the provided root to check if the corresponding
folders (contained in the appropriate column) can be found. Remember that
to work properly, this operation expects a standard folder structure, such
as the one provided by VISPA2. This function also produces an interactive
HTML report.
fs_path <- generate_default_folder_structure()
withr::with_options(list(ISAnalytics.reports = FALSE), code = {
af <- import_association_file(fs_path$af, root = fs_path$root)
})
#> *** Association file import summary ***
#> ℹ For detailed report please set option 'ISAnalytics.reports' to TRUE
#> Parsing problems detected: FALSE
#> Date parsing problems: FALSE
#> Column problems detected: FALSE
#> NAs found in important columns: FALSE
#> File system alignment: no problems detected
#> # A tibble: 6 × 74
#> ProjectID FUSIONID PoolID TagSequence SubjectID VectorType VectorID
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 PJ01 ET#382.46 POOL01 LTR75LC38 PT001 lenti GLOBE
#> 2 PJ01 ET#381.40 POOL01 LTR53LC32 PT001 lenti GLOBE
#> 3 PJ01 ET#381.9 POOL01 LTR83LC66 PT001 lenti GLOBE
#> 4 PJ01 ET#381.71 POOL01 LTR27LC94 PT001 lenti GLOBE
#> 5 PJ01 ET#381.2 POOL01 LTR69LC52 PT001 lenti GLOBE
#> 6 PJ01 ET#382.28 POOL01 LTR37LC2 PT001 lenti GLOBE
#> # ℹ 67 more variables: ExperimentID <chr>, Tissue <chr>, TimePoint <chr>,
#> # DNAFragmentation <chr>, PCRMethod <chr>, TagIDextended <chr>,
#> # Keywords <chr>, CellMarker <chr>, TagID <chr>, NGSProvider <chr>,
#> # NGSTechnology <chr>, ConverrtedFilesDir <chr>, ConverrtedFilesName <chr>,
#> # SourceFileFolder <chr>, SourceFileNameR1 <chr>, SourceFileNameR2 <chr>,
#> # DNAnumber <chr>, ReplicateNumber <int>, DNAextractionDate <date>,
#> # DNAngUsed <dbl>, LinearPCRID <chr>, LinearPCRDate <date>, …
You can change several arguments in the function call to modify the behavior of the function.
root
NULL
if you only want to import the association file without
file system alignment. Beware that some of the automated import
functionalities won’t work!proj_folder
(by default PathToFolderProjectID
) in the file should contain
relative file paths, so if for example your root is set to “/home” and
your project folder in the association file is set to “/PJ01”, the function
will check that the directory exists under “/home/PJ01”PathToFolderProjectID
column and set root
= ""dates_format
: a string that is useful for properly parsing dates from
tabular formatsseparator
: the column separator used in the file. Defaults to “\t”,
other valid separators are “,” (comma), “;” (semi-colon)filter_for
: you can set this argument to a named list of filters,
where names are column names. For example list(ProjectID = "PJ01")
will
return only those rows whose attribute “ProjectID” equals “PJ01”import_iss
: either TRUE
or FALSE
. If set to TRUE
, performs
an internal call to import_Vispa2_stats()
(see next section), and appends
the imported files to metadataconvert_tp
: either TRUE
or FALSE
. Converts the column containing
the time point expressed in days in months and years (with custom logic).report_path
NULL
to avoid the production of a report...
: additional named arguments to pass to import_Vispa2_stats()
if
you chose to import VISPA2 statsFor further details view the dedicated function documentation.
NOTE: the function supports files in various formats as long as the correct
separator is provided. It also accepts files in *.xlsx
and *.xls
formats
but we do not recommend using these since the report won’t include a
detailed summary of potential parsing problems.
The interactive report includes useful information such as
import_iss
was TRUE
)VISPA2 automatically produces summary files for each pool holding
information that can be useful for other analyses downstream,
so it is recommended to import them in the first steps of the workflow.
To do that, you can use import_VISPA2_stats
:
vispa_stats <- import_Vispa2_stats(
association_file = af,
join_with_af = FALSE,
report_path = NULL
)
#> # A tibble: 6 × 14
#> POOL TAG RUN_NAME PHIX_MAPPING PLASMID_MAPPED_BYPOOL BARCODE_MUX
#> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 POOL01-1 LTR75LC38 PJ01|POOL01… 43586699 2256176 645026
#> 2 POOL01-1 LTR53LC32 PJ01|POOL01… 43586699 2256176 652208
#> 3 POOL01-1 LTR83LC66 PJ01|POOL01… 43586699 2256176 451519
#> 4 POOL01-1 LTR27LC94 PJ01|POOL01… 43586699 2256176 426500
#> 5 POOL01-1 LTR69LC52 PJ01|POOL01… 43586699 2256176 18300
#> 6 POOL01-1 LTR37LC2 PJ01|POOL01… 43586699 2256176 729327
#> # ℹ 8 more variables: LTR_IDENTIFIED <dbl>, TRIMMING_FINAL_LTRLC <dbl>,
#> # LV_MAPPED <dbl>, BWA_MAPPED_OVERALL <dbl>, ISS_MAPPED_OVERALL <dbl>,
#> # RAW_READS <lgl>, QUALITY_PASSED <lgl>, ISS_MAPPED_PP <lgl>
The function requires as input the imported and file system aligned
association file and it will scan the iss
folder for files that match some
known prefixes (defaults are already provided but you can change them as you
see fit). You can either choose to join the imported data frames with the
association file in input and obtain a single data frame or keep it as it is,
just set the parameter join_with_af
accordingly.
At the end of the process an HTML report is produced, signaling potential
problems.
You can directly call this function when you import the association file
by setting the import_iss
argument of import_association_file
to TRUE
.
If you want to import a single integration matrix you can do so by using the
import_single_Vispa2Matrix()
function.
This function reads the file and converts it into a tidy structure: several
different formats can be read, since you can specify the column separator.
matrix_path <- fs::path(
fs_path$root,
"PJ01",
"quantification",
"POOL01-1",
"PJ01_POOL01-1_seqCount_matrix.no0.annotated.tsv.gz"
)
matrix <- import_single_Vispa2Matrix(matrix_path)
#> # A tibble: 802 × 7
#> chr integration_locus strand GeneName GeneStrand CompleteAmplificatio…¹
#> <chr> <int> <chr> <chr> <chr> <chr>
#> 1 16 68164148 + NFATC3 + PJ01_POOL01_LTR75LC38…
#> 2 4 129390130 + LOC100507487 + PJ01_POOL01_LTR75LC38…
#> 3 5 84009671 - EDIL3 - PJ01_POOL01_LTR75LC38…
#> 4 12 54635693 - CBX5 - PJ01_POOL01_LTR75LC38…
#> 5 2 181930711 + UBE2E3 + PJ01_POOL01_LTR75LC38…
#> 6 20 35920986 + MANBAL + PJ01_POOL01_LTR75LC38…
#> 7 22 26900625 + TFIP11 - PJ01_POOL01_LTR75LC38…
#> 8 3 106580075 + LINC00882 - PJ01_POOL01_LTR75LC38…
#> 9 1 16186297 - SPEN + PJ01_POOL01_LTR75LC38…
#> 10 17 61712419 + MAP3K3 + PJ01_POOL01_LTR75LC38…
#> # ℹ 792 more rows
#> # ℹ abbreviated name: ¹CompleteAmplificationID
#> # ℹ 1 more variable: Value <int>
For details on usage and arguments view the dedicated function documentation.
Integration matrices import can be automated when when the association file
is imported with the file system alignment option.
ISAnalytics
provides a function, import_parallel_Vispa2Matrices()
,
that allows to do just that in a fast and efficient way.
withr::with_options(list(ISAnalytics.reports = FALSE), {
matrices <- import_parallel_Vispa2Matrices(af,
c("seqCount", "fragmentEstimate"),
mode = "AUTO"
)
})
Let’s see how the behavior of the function changes when we change arguments.
association_file
argumentYou can supply a data frame object, imported via import_association_file()
(see Section 4.4) or a string (the path to the association file
on disk). In the first scenario it is necessary to perform file system
alignment, since the function scans the folders contained in the column
Path_quant
, while in the second case you should also provide as additional
named argument (to ...
) an appropriate root
: the function will
internally call import_association_file()
, if you don’t have specific
needs we recommend doing the 2 steps separately and provide the association
file as a data frame.
quantification_type
argumentFor each pool there may be multiple available quantification types, that is,
different matrices containing the same samples
and same genomic features but a different quantification.
A typical workflow contemplates seqCount
and fragmentEstimate
,
all the supported quantification types can be viewed with
quantification_types()
.
matrix_type
argumentAs we mentioned in Section 4.3, annotation columns are optional
and may not be included in some matrices. This argument allows you to
specify the function to look for only a specific type of matrix, either
annotated
or not_annotated
.
File suffixes for matrices are specified via matrix_file_suffixes()
.
workers
argumentSets the number of parallel workers to set up. This highly depends on the hardware configuration of your machine.
multi_quant_matrix
argumentWhen importing more than one quantification at once, it can be very handy
to have all data in a single data frame rather than two. If set to TRUE
the function will internally call comparison_matrix()
and produce a
single data frames that has a dedicated column for each quantification.
For example, for the matrices we’ve imported before:
#> # A tibble: 6 × 8
#> chr integration_locus strand GeneName GeneStrand CompleteAmplificationID
#> <chr> <int> <chr> <chr> <chr> <chr>
#> 1 16 68164148 + NFATC3 + PJ01_POOL01_LTR75LC38_…
#> 2 4 129390130 + LOC100507487 + PJ01_POOL01_LTR75LC38_…
#> 3 5 84009671 - EDIL3 - PJ01_POOL01_LTR75LC38_…
#> 4 12 54635693 - CBX5 - PJ01_POOL01_LTR75LC38_…
#> 5 2 181930711 + UBE2E3 + PJ01_POOL01_LTR75LC38_…
#> 6 20 35920986 + MANBAL + PJ01_POOL01_LTR75LC38_…
#> # ℹ 2 more variables: fragmentEstimate <dbl>, seqCount <int>
report_path
argumentAs other import functions, also import_parallel_Vispa2Matrices()
produces
an interactive report, use this argument to set the appropriate path were
the report should be saved.
mode
argumentSince ISAnalytics 1.8.3
this argument can only be set to AUTO
.
What do you want to import?
In a fully automated mode, the function will try to import everything that
is contained in the input association file. This means that if you need to
import only a specific set of projects/pools, you will need to filter the
association file accordingly prior calling the function (you can easily
do that via the filter_for
argument as explained in Section 4.4).
How to deal with duplicates?
When scanning folders for files that match a given pattern (in our case the
function looks for matrices that match the quantification type and the
matrix type), it is very possible that the same folder contains multiple files
for the same quantification. Of course this is not recommended, we suggest to
move the duplicated files in a sub directory or remove them if they’re not
necessary, but in case this happens, you need to set two other arguments
(described in the next sub sections) to “help” the function discriminate
between duplicates. Please note that if such discrimination is not possible
no files are imported.
patterns
argumentProviding a set of patterns (interpreted as regular expressions) helps the function to choose between duplicated files if any are found. If you’re confident your folders don’t contain any duplicates feel free to ignore this argument.
matching_opt
argumentThis argument is relevant only if patterns
isn’t NULL
. Tells the function how to match the given patterns if multiple
are supplied: ALL
means keep only those files whose name matches all the
given patterns, ANY
means keep only those files whose name matches any of the
given patterns and OPTIONAL
expresses a preference, try to find files that
contain the patterns and if you don’t find any return whatever you find.
...
argumentAdditional named arguments to supply to comparison_matrix()
and
import_single_Vispa2_matrix
Earlier versions of the package featured two separated functions,
import_parallel_Vispa2Matrices_auto()
and
import_parallel_Vispa2Matrices_interactive()
. Those functions are now
officially deprecated (since ISAnalytics 1.3.3
) and will be defunct on
the next release cycle.
This section goes more in detail on some data cleaning and pre-processing operations you can perform with this package.
ISAnalytics offers several different functions for cleaning and pre-processing your data.
compute_near_integrations()
outlier_filter()
remove_collisions()
purity_filter()
aggregate_values_by_key()
, aggregate_metadata()
In this section we illustrate the functions dedicated to collision removal.
We’re not going into too much detail here, but we’re going to explain in a very simple way what a “collision” is and how the function in this package deals with them.
We say that an integration (aka a unique combination of
mandatory_IS_vars()
) is a collision if this combination is shared
between different independent samples: an independent sample is a unique
combination of metadata fields specified by the user.
The reason behind this is that it’s highly improbable to observe
the very same integration in two different independent samples
and this phenomenon might
be an indicator of some kind of contamination in the sequencing phase or in
PCR phase, for this reason we might want to exclude such contamination from
our analysis.
ISAnalytics
provides a function that processes the imported data for the
removal or reassignment of these “problematic” integrations,
remove_collisions()
.
The processing is done using the sequence count value, so the corresponding matrix is needed for this operation.
The remove_collisions()
function follows several logical
steps to decide whether
an integration is a collision and if it is it decides whether to re-assign it or
remove it entirely based on different criteria.
The function uses the information stored in the association file to assess which independent samples are present and counts the number of independent samples for each integration: those who have a count > 1 are considered collisions.
chr | integration_locus | strand | seqCount | CompleteAmplificationID | SubjectID | ProjectID |
---|---|---|---|---|---|---|
1 | 123454 | + | 653 | SAMPLE1 | SUBJ01 | PJ01 |
1 | 123454 | + | 456 | SAMPLE2 | SUBJ02 | PJ01 |
Once the collisions are identified, the function follows 3 steps where it tries to re-assign the combination to a single independent sample. The criteria are:
reads_ratio
), the default value is 10.If none of the criteria were sufficient to make a decision, the integration is simply removed from the matrix.
data("integration_matrices", package = "ISAnalytics")
data("association_file", package = "ISAnalytics")
## Multi quantification matrix
no_coll <- remove_collisions(
x = integration_matrices,
association_file = association_file,
report_path = NULL
)
#> Identifying collisions...
#> Processing collisions...
#> Finished!
## Matrix list
separated <- separate_quant_matrices(integration_matrices)
no_coll_list <- remove_collisions(
x = separated,
association_file = association_file,
report_path = NULL
)
#> Identifying collisions...
#> Processing collisions...
#> Finished!
## Only sequence count
no_coll_single <- remove_collisions(
x = separated$seqCount,
association_file = association_file,
quant_cols = c(seqCount = "Value"),
report_path = NULL
)
#> Identifying collisions...
#> Processing collisions...
#> Finished!
Important notes on the association file:
The function accepts different inputs, namely:
quantification_types()
If the option ISAnalytics.reports
is active, an interactive report in
HTML format will be produced at the specified path.
If you’ve given as input the standalone sequence count
matrix to remove_collisions()
, to realign other matrices you have
to call the function realign_after_collisions()
, passing as input the
processed sequence count matrix and the named list of other matrices
to realign.
NOTE: the names in the list must be quantification types.
other_realigned <- realign_after_collisions(
sc_matrix = no_coll_single,
other_matrices = list(fragmentEstimate = separated$fragmentEstimate)
)
In this section we’re going to explain in detail how to use functions of the aggregate family, namely:
aggregate_metadata()
aggregate_values_by_key()
We refer to information contained in the association file as “metadata”:
sometimes it’s useful to obtain collective information based on a certain
group of variables we’re interested in. The function aggregate_metadata()
does just that: according to the grouping variables, meaning the names of
the columns in the association file to perform a group_by
operation with,it
creates a summary. You can fully customize the summary by providing a
“function table” that tells the function which operation should be
applied to which column and what name to give to the output column.
A default is already supplied:
#> # A tibble: 15 × 4
#> Column Function Args Output_colname
#> <chr> <list> <lgl> <chr>
#> 1 FusionPrimerPCRDate <formula> NA {.col}_min
#> 2 LinearPCRDate <formula> NA {.col}_min
#> 3 VCN <formula> NA {.col}_avg
#> 4 ng DNA corrected <formula> NA {.col}_avg
#> 5 Kapa <formula> NA {.col}_avg
#> 6 ng DNA corrected <formula> NA {.col}_sum
#> 7 ulForPool <formula> NA {.col}_sum
#> 8 BARCODE_MUX <formula> NA {.col}_sum
#> 9 TRIMMING_FINAL_LTRLC <formula> NA {.col}_sum
#> 10 LV_MAPPED <formula> NA {.col}_sum
#> 11 BWA_MAPPED_OVERALL <formula> NA {.col}_sum
#> 12 ISS_MAPPED_OVERALL <formula> NA {.col}_sum
#> 13 PCRMethod <formula> NA {.col}
#> 14 NGSTechnology <formula> NA {.col}
#> 15 DNAnumber <formula> NA {.col}
You can either provide purrr-style lambdas (as given in the example above),
or simply specify the name of the function and additional parameters as a
list in a separated column. If you choose to provide your own table you
should maintain the column names for the function to work properly.
For more details on this take a look at the function documentation
?default_meta_agg
.
import_assocition_file()
. If you need more
information on import function please view the vignette
“How to use import functions”:
vignette("how_to_import_functions", package="ISAnalytics")
.data("association_file", package = "ISAnalytics")
aggregated_meta <- aggregate_metadata(association_file = association_file)
#> # A tibble: 20 × 19
#> SubjectID CellMarker Tissue TimePoint FusionPrimerPCRDate_min
#> <chr> <chr> <chr> <chr> <date>
#> 1 PT001 MNC BM 0030 2016-11-03
#> 2 PT001 MNC BM 0060 2016-11-03
#> 3 PT001 MNC BM 0090 2016-11-03
#> 4 PT001 MNC BM 0180 2016-11-03
#> 5 PT001 MNC BM 0360 2017-04-21
#> 6 PT001 MNC PB 0030 2016-11-03
#> 7 PT001 MNC PB 0060 2016-11-03
#> 8 PT001 MNC PB 0090 2016-11-03
#> 9 PT001 MNC PB 0180 2016-11-03
#> 10 PT001 MNC PB 0360 2017-04-21
#> 11 PT002 MNC BM 0030 2017-04-21
#> 12 PT002 MNC BM 0060 2017-05-05
#> 13 PT002 MNC BM 0090 2017-05-05
#> 14 PT002 MNC BM 0180 2017-05-16
#> 15 PT002 MNC BM 0360 2018-03-12
#> 16 PT002 MNC PB 0030 2017-04-21
#> 17 PT002 MNC PB 0060 2017-05-05
#> 18 PT002 MNC PB 0090 2017-05-05
#> 19 PT002 MNC PB 0180 2017-05-05
#> 20 PT002 MNC PB 0360 2018-03-12
#> # ℹ 14 more variables: LinearPCRDate_min <date>, VCN_avg <dbl>,
#> # `ng DNA corrected_avg` <dbl>, Kapa_avg <dbl>, `ng DNA corrected_sum` <dbl>,
#> # ulForPool_sum <dbl>, BARCODE_MUX_sum <int>, TRIMMING_FINAL_LTRLC_sum <int>,
#> # LV_MAPPED_sum <int>, BWA_MAPPED_OVERALL_sum <int>,
#> # ISS_MAPPED_OVERALL_sum <int>, PCRMethod <chr>, NGSTechnology <chr>,
#> # DNAnumber <chr>
ISAnalytics
contains useful functions to aggregate the values contained in
your imported matrices based on a key, aka a single column or a combination of
columns contained in the association file that are related to the samples.
import_parallel_Vispa2Matrices()
data("integration_matrices", package = "ISAnalytics")
data("association_file", package = "ISAnalytics")
aggreg <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 1,074 × 11
#> chr integration_locus strand GeneName GeneStrand SubjectID CellMarker
#> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
#> 1 1 8464757 - RERE - PT001 MNC
#> 2 1 8464757 - RERE - PT001 MNC
#> 3 1 8607357 + RERE - PT001 MNC
#> 4 1 8607357 + RERE - PT001 MNC
#> 5 1 8607357 + RERE - PT001 MNC
#> 6 1 8607362 - RERE - PT001 MNC
#> 7 1 8850362 + RERE - PT002 MNC
#> 8 1 11339120 + UBIAD1 + PT001 MNC
#> 9 1 11339120 + UBIAD1 + PT001 MNC
#> 10 1 11339120 + UBIAD1 + PT001 MNC
#> Tissue TimePoint seqCount_sum fragmentEstimate_sum
#> <chr> <chr> <dbl> <dbl>
#> 1 BM 0030 542 3.01
#> 2 BM 0060 1 1.00
#> 3 BM 0060 1 1.00
#> 4 BM 0180 1096 5.01
#> 5 BM 0360 330 34.1
#> 6 BM 0180 1702 4.01
#> 7 BM 0360 562 3.01
#> 8 BM 0060 1605 8.03
#> 9 PB 0060 1 1.00
#> 10 PB 0180 1 1.00
#> # ℹ 1,064 more rows
The function aggregate_values_by_key
can perform the aggregation both on the
list of matrices and a single matrix.
The function has several different parameters that have default values that can be changed according to user preference.
key
valuec("SubjectID", "CellMarker", "Tissue", "TimePoint")
(same default key as the aggregate_metadata
function).agg1 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = c("SubjectID", "ProjectID"),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 9
#> chr integration_locus strand GeneName GeneStrand SubjectID ProjectID
#> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
#> 1 1 8464757 - RERE - PT001 PJ01
#> 2 1 8607357 + RERE - PT001 PJ01
#> 3 1 8607362 - RERE - PT001 PJ01
#> 4 1 8850362 + RERE - PT002 PJ01
#> 5 1 11339120 + UBIAD1 + PT001 PJ01
#> 6 1 12341466 - VPS13D + PT002 PJ01
#> 7 1 14034054 - PRDM2 + PT002 PJ01
#> 8 1 16186297 - SPEN + PT001 PJ01
#> 9 1 16602483 + FBXO42 - PT001 PJ01
#> 10 1 16602483 + FBXO42 - PT002 PJ01
#> seqCount_sum fragmentEstimate_sum
#> <dbl> <dbl>
#> 1 543 4.01
#> 2 1427 40.1
#> 3 1702 4.01
#> 4 562 3.01
#> 5 1607 10.0
#> 6 1843 8.05
#> 7 1938 3.01
#> 8 3494 16.1
#> 9 2947 9.04
#> 10 30 2.00
#> # ℹ 567 more rows
lambda
valuelambda
parameter indicates the function(s) to be applied to the
values for aggregation.
lambda
must be a named list of either functions or purrr-style lambdas:
if you would like to specify additional parameters to the function
the second option is recommended.
The only important note on functions is that they should perform some kind of
aggregation on numeric values: this means in practical terms they need
to accept a vector of numeric/integer values as input and produce a
SINGLE value as output. Valid options for this purpose might be: sum
, mean
,
median
, min
, max
and so on.agg2 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(mean = ~ mean(.x, na.rm = TRUE)),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 8
#> chr integration_locus strand GeneName GeneStrand SubjectID seqCount_mean
#> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl>
#> 1 1 8464757 - RERE - PT001 272.
#> 2 1 8607357 + RERE - PT001 285.
#> 3 1 8607362 - RERE - PT001 851
#> 4 1 8850362 + RERE - PT002 562
#> 5 1 11339120 + UBIAD1 + PT001 321.
#> 6 1 12341466 - VPS13D + PT002 1843
#> 7 1 14034054 - PRDM2 + PT002 1938
#> 8 1 16186297 - SPEN + PT001 699.
#> 9 1 16602483 + FBXO42 - PT001 982.
#> 10 1 16602483 + FBXO42 - PT002 30
#> fragmentEstimate_mean
#> <dbl>
#> 1 2.01
#> 2 8.02
#> 3 2.01
#> 4 3.01
#> 5 2.01
#> 6 8.05
#> 7 3.01
#> 8 3.22
#> 9 3.01
#> 10 2.00
#> # ℹ 567 more rows
Note that, when specifying purrr-style lambdas (formulas), the first
parameter needs to be set to .x
, other parameters can be set as usual.
You can also use in lambda
functions that produce data frames or lists.
In this case all variables from the produced data frame will be included
in the final data frame. For example:
agg3 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(describe = ~ list(psych::describe(.x))),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 8
#> chr integration_locus strand GeneName GeneStrand SubjectID
#> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 8464757 - RERE - PT001
#> 2 1 8607357 + RERE - PT001
#> 3 1 8607362 - RERE - PT001
#> 4 1 8850362 + RERE - PT002
#> 5 1 11339120 + UBIAD1 + PT001
#> 6 1 12341466 - VPS13D + PT002
#> 7 1 14034054 - PRDM2 + PT002
#> 8 1 16186297 - SPEN + PT001
#> 9 1 16602483 + FBXO42 - PT001
#> 10 1 16602483 + FBXO42 - PT002
#> seqCount_describe fragmentEstimate_describe
#> <list> <list>
#> 1 <psych [1 × 13]> <psych [1 × 13]>
#> 2 <psych [1 × 13]> <psych [1 × 13]>
#> 3 <psych [1 × 13]> <psych [1 × 13]>
#> 4 <psych [1 × 13]> <psych [1 × 13]>
#> 5 <psych [1 × 13]> <psych [1 × 13]>
#> 6 <psych [1 × 13]> <psych [1 × 13]>
#> 7 <psych [1 × 13]> <psych [1 × 13]>
#> 8 <psych [1 × 13]> <psych [1 × 13]>
#> 9 <psych [1 × 13]> <psych [1 × 13]>
#> 10 <psych [1 × 13]> <psych [1 × 13]>
#> # ℹ 567 more rows
value_cols
valuevalue_cols
parameter tells the function on which numeric columns
of x the functions should be applied.
Note that every function contained in lambda
will be applied to every
column in value_cols
: resulting columns will be named as
“original name_function applied”.agg4 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(sum = sum, mean = mean),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 10
#> chr integration_locus strand GeneName GeneStrand SubjectID seqCount_sum
#> <chr> <dbl> <chr> <chr> <chr> <chr> <dbl>
#> 1 1 8464757 - RERE - PT001 543
#> 2 1 8607357 + RERE - PT001 1427
#> 3 1 8607362 - RERE - PT001 1702
#> 4 1 8850362 + RERE - PT002 562
#> 5 1 11339120 + UBIAD1 + PT001 1607
#> 6 1 12341466 - VPS13D + PT002 1843
#> 7 1 14034054 - PRDM2 + PT002 1938
#> 8 1 16186297 - SPEN + PT001 3494
#> 9 1 16602483 + FBXO42 - PT001 2947
#> 10 1 16602483 + FBXO42 - PT002 30
#> seqCount_mean fragmentEstimate_sum fragmentEstimate_mean
#> <dbl> <dbl> <dbl>
#> 1 272. 4.01 2.01
#> 2 285. 40.1 8.02
#> 3 851 4.01 2.01
#> 4 562 3.01 3.01
#> 5 321. 10.0 2.01
#> 6 1843 8.05 8.05
#> 7 1938 3.01 3.01
#> 8 699. 16.1 3.22
#> 9 982. 9.04 3.01
#> 10 30 2.00 2.00
#> # ℹ 567 more rows
group
valuegroup
parameter should contain all other variables to include in the
grouping besides key
. By default this contains
c("chr", "integration_locus","strand", "GeneName", "GeneStrand")
.
You can change this grouping as you see
fit, if you don’t want to add any other variable to the key, just set it to
NULL
.agg5 <- aggregate_values_by_key(
x = integration_matrices,
association_file = association_file,
key = "SubjectID",
lambda = list(sum = sum, mean = mean),
group = c(mandatory_IS_vars()),
value_cols = c("seqCount", "fragmentEstimate")
)
#> # A tibble: 577 × 8
#> chr integration_locus strand SubjectID seqCount_sum seqCount_mean
#> <chr> <dbl> <chr> <chr> <dbl> <dbl>
#> 1 1 8464757 - PT001 543 272.
#> 2 1 8607357 + PT001 1427 285.
#> 3 1 8607362 - PT001 1702 851
#> 4 1 8850362 + PT002 562 562
#> 5 1 11339120 + PT001 1607 321.
#> 6 1 12341466 - PT002 1843 1843
#> 7 1 14034054 - PT002 1938 1938
#> 8 1 16186297 - PT001 3494 699.
#> 9 1 16602483 + PT001 2947 982.
#> 10 1 16602483 + PT002 30 30
#> fragmentEstimate_sum fragmentEstimate_mean
#> <dbl> <dbl>
#> 1 4.01 2.01
#> 2 40.1 8.02
#> 3 4.01 2.01
#> 4 3.01 3.01
#> 5 10.0 2.01
#> 6 8.05 8.05
#> 7 3.01 3.01
#> 8 16.1 3.22
#> 9 9.04 3.01
#> 10 2.00 2.00
#> # ℹ 567 more rows
R
session information.
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.3.1 (2023-06-16)
#> os Ubuntu 22.04.2 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2023-07-24
#> pandoc 2.7.3 @ /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> archive 1.1.5 2022-05-06 [2] CRAN (R 4.3.1)
#> backports 1.4.1 2021-12-13 [2] CRAN (R 4.3.1)
#> bibtex 0.5.1 2023-01-26 [2] CRAN (R 4.3.1)
#> BiocManager 1.30.21.1 2023-07-18 [2] CRAN (R 4.3.1)
#> BiocParallel 1.34.2 2023-07-24 [2] Bioconductor
#> BiocStyle * 2.28.0 2023-07-24 [2] Bioconductor
#> bit 4.0.5 2022-11-15 [2] CRAN (R 4.3.1)
#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.3.1)
#> bookdown 0.34 2023-05-09 [2] CRAN (R 4.3.1)
#> bslib 0.5.0 2023-06-09 [2] CRAN (R 4.3.1)
#> cachem 1.0.8 2023-05-01 [2] CRAN (R 4.3.1)
#> cellranger 1.1.0 2016-07-27 [2] CRAN (R 4.3.1)
#> cli 3.6.1 2023-03-23 [2] CRAN (R 4.3.1)
#> cluster 2.1.4 2022-08-22 [3] CRAN (R 4.3.1)
#> codetools 0.2-19 2023-02-01 [3] CRAN (R 4.3.1)
#> colorspace 2.1-0 2023-01-23 [2] CRAN (R 4.3.1)
#> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.3.1)
#> crosstalk 1.2.0 2021-11-04 [2] CRAN (R 4.3.1)
#> curl 5.0.1 2023-06-07 [2] CRAN (R 4.3.1)
#> data.table 1.14.8 2023-02-17 [2] CRAN (R 4.3.1)
#> datamods 1.4.1 2023-06-19 [2] CRAN (R 4.3.1)
#> digest 0.6.33 2023-07-07 [2] CRAN (R 4.3.1)
#> doFuture 1.0.0 2023-03-24 [2] CRAN (R 4.3.1)
#> dplyr 1.1.2 2023-04-20 [2] CRAN (R 4.3.1)
#> DT * 0.28 2023-05-18 [2] CRAN (R 4.3.1)
#> ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.3.1)
#> eulerr 7.0.0 2022-12-10 [2] CRAN (R 4.3.1)
#> evaluate 0.21 2023-05-05 [2] CRAN (R 4.3.1)
#> fansi 1.0.4 2023-01-22 [2] CRAN (R 4.3.1)
#> farver 2.1.1 2022-07-06 [2] CRAN (R 4.3.1)
#> fastmap 1.1.1 2023-02-24 [2] CRAN (R 4.3.1)
#> forcats 1.0.0 2023-01-29 [2] CRAN (R 4.3.1)
#> foreach 1.5.2 2022-02-02 [2] CRAN (R 4.3.1)
#> foreign 0.8-84 2022-12-06 [3] CRAN (R 4.3.1)
#> fs 1.6.3 2023-07-20 [2] CRAN (R 4.3.1)
#> future 1.33.0 2023-07-01 [2] CRAN (R 4.3.1)
#> future.apply 1.11.0 2023-05-21 [2] CRAN (R 4.3.1)
#> generics 0.1.3 2022-07-05 [2] CRAN (R 4.3.1)
#> ggplot2 3.4.2 2023-04-03 [2] CRAN (R 4.3.1)
#> globals 0.16.2 2022-11-21 [2] CRAN (R 4.3.1)
#> glue 1.6.2 2022-02-24 [2] CRAN (R 4.3.1)
#> gtable 0.3.3 2023-03-21 [2] CRAN (R 4.3.1)
#> gtools 3.9.4 2022-11-27 [2] CRAN (R 4.3.1)
#> haven 2.5.3 2023-06-30 [2] CRAN (R 4.3.1)
#> highr 0.10 2022-12-22 [2] CRAN (R 4.3.1)
#> hms 1.1.3 2023-03-21 [2] CRAN (R 4.3.1)
#> htmltools 0.5.5 2023-03-23 [2] CRAN (R 4.3.1)
#> htmlwidgets 1.6.2 2023-03-17 [2] CRAN (R 4.3.1)
#> httpuv 1.6.11 2023-05-11 [2] CRAN (R 4.3.1)
#> httr 1.4.6 2023-05-08 [2] CRAN (R 4.3.1)
#> ISAnalytics * 1.10.2 2023-07-24 [1] Bioconductor
#> iterators 1.0.14 2022-02-05 [2] CRAN (R 4.3.1)
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.3.1)
#> jsonlite 1.8.7 2023-06-29 [2] CRAN (R 4.3.1)
#> knitr 1.43 2023-05-25 [2] CRAN (R 4.3.1)
#> later 1.3.1 2023-05-02 [2] CRAN (R 4.3.1)
#> lattice 0.21-8 2023-04-05 [3] CRAN (R 4.3.1)
#> lifecycle 1.0.3 2022-10-07 [2] CRAN (R 4.3.1)
#> listenv 0.9.0 2022-12-16 [2] CRAN (R 4.3.1)
#> lubridate 1.9.2 2023-02-10 [2] CRAN (R 4.3.1)
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.3.1)
#> MASS 7.3-60 2023-05-04 [3] CRAN (R 4.3.1)
#> Matrix 1.6-0 2023-07-08 [3] CRAN (R 4.3.1)
#> mgcv 1.9-0 2023-07-11 [3] CRAN (R 4.3.1)
#> mime 0.12 2021-09-28 [2] CRAN (R 4.3.1)
#> mnormt 2.1.1 2022-09-26 [2] CRAN (R 4.3.1)
#> munsell 0.5.0 2018-06-12 [2] CRAN (R 4.3.1)
#> nlme 3.1-162 2023-01-31 [3] CRAN (R 4.3.1)
#> openxlsx 4.2.5.2 2023-02-06 [2] CRAN (R 4.3.1)
#> parallelly 1.36.0 2023-05-26 [2] CRAN (R 4.3.1)
#> permute 0.9-7 2022-01-27 [2] CRAN (R 4.3.1)
#> phosphoricons 0.2.0 2023-05-17 [2] CRAN (R 4.3.1)
#> pillar 1.9.0 2023-03-22 [2] CRAN (R 4.3.1)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.3.1)
#> plyr 1.8.8 2022-11-11 [2] CRAN (R 4.3.1)
#> polyclip 1.10-4 2022-10-20 [2] CRAN (R 4.3.1)
#> polylabelr 0.2.0 2020-04-19 [2] CRAN (R 4.3.1)
#> progressr 0.13.0 2023-01-10 [2] CRAN (R 4.3.1)
#> promises 1.2.0.1 2021-02-11 [2] CRAN (R 4.3.1)
#> psych 2.3.6 2023-06-21 [2] CRAN (R 4.3.1)
#> purrr 1.0.1 2023-01-10 [2] CRAN (R 4.3.1)
#> R.methodsS3 1.8.2 2022-06-13 [2] CRAN (R 4.3.1)
#> R.oo 1.25.0 2022-06-12 [2] CRAN (R 4.3.1)
#> R.utils 2.12.2 2022-11-11 [2] CRAN (R 4.3.1)
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.3.1)
#> Rcpp 1.0.11 2023-07-06 [2] CRAN (R 4.3.1)
#> reactable 0.4.4 2023-03-12 [2] CRAN (R 4.3.1)
#> readr 2.1.4 2023-02-10 [2] CRAN (R 4.3.1)
#> readxl 1.4.3 2023-07-06 [2] CRAN (R 4.3.1)
#> RefManageR * 1.4.0 2022-09-30 [2] CRAN (R 4.3.1)
#> rio 0.5.29 2021-11-22 [2] CRAN (R 4.3.1)
#> rlang 1.1.1 2023-04-28 [2] CRAN (R 4.3.1)
#> rmarkdown 2.23 2023-07-01 [2] CRAN (R 4.3.1)
#> sass 0.4.7 2023-07-15 [2] CRAN (R 4.3.1)
#> scales 1.2.1 2022-08-20 [2] CRAN (R 4.3.1)
#> sessioninfo * 1.2.2 2021-12-06 [2] CRAN (R 4.3.1)
#> shiny 1.7.4.1 2023-07-06 [2] CRAN (R 4.3.1)
#> shinybusy 0.3.1 2022-05-10 [2] CRAN (R 4.3.1)
#> shinyWidgets 0.7.6 2023-01-08 [2] CRAN (R 4.3.1)
#> stringi 1.7.12 2023-01-11 [2] CRAN (R 4.3.1)
#> stringr 1.5.0 2022-12-02 [2] CRAN (R 4.3.1)
#> tibble 3.2.1 2023-03-20 [2] CRAN (R 4.3.1)
#> tidyr 1.3.0 2023-01-24 [2] CRAN (R 4.3.1)
#> tidyselect 1.2.0 2022-10-10 [2] CRAN (R 4.3.1)
#> timechange 0.2.0 2023-01-11 [2] CRAN (R 4.3.1)
#> tzdb 0.4.0 2023-05-12 [2] CRAN (R 4.3.1)
#> utf8 1.2.3 2023-01-31 [2] CRAN (R 4.3.1)
#> vctrs 0.6.3 2023-06-14 [2] CRAN (R 4.3.1)
#> vegan 2.6-4 2022-10-11 [2] CRAN (R 4.3.1)
#> vroom 1.6.3 2023-04-28 [2] CRAN (R 4.3.1)
#> withr 2.5.0 2022-03-03 [2] CRAN (R 4.3.1)
#> writexl 1.4.2 2023-01-06 [2] CRAN (R 4.3.1)
#> xfun 0.39 2023-04-20 [2] CRAN (R 4.3.1)
#> xml2 1.3.5 2023-07-06 [2] CRAN (R 4.3.1)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 4.3.1)
#> yaml 2.3.7 2023-01-23 [2] CRAN (R 4.3.1)
#> zip 2.3.0 2023-04-17 [2] CRAN (R 4.3.1)
#>
#> [1] /tmp/RtmpwHCP0w/Rinst1130961abd142f
#> [2] /home/biocbuild/bbs-3.17-bioc/R/site-library
#> [3] /home/biocbuild/bbs-3.17-bioc/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
This vignette was generated using BiocStyle (Oleś, 2023) with knitr (Xie, 2023) and rmarkdown (Allaire, Xie, Dervieux, McPherson, Luraschi, Ushey, Atkins, Wickham, Cheng, Chang, and Iannone, 2023) running behind the scenes.
Citations made with RefManageR (McLean, 2017).
[1] J. Allaire, Y. Xie, C. Dervieux, et al. rmarkdown: Dynamic Documents for R. R package version 2.23. 2023. URL: https://github.com/rstudio/rmarkdown.
[2] S. B. Giulio Spinozzi Andrea Calabria. “VISPA2: a scalable pipeline for high-throughput identification and annotation of vector integration sites”. In: BMC Bioinformatics (Nov. 25, 2017). DOI: 10.1186/s12859-017-1937-9.
[3] M. W. McLean. “RefManageR: Import and Manage BibTeX and BibLaTeX References in R”. In: The Journal of Open Source Software (2017). DOI: 10.21105/joss.00338.
[4] A. Oleś. BiocStyle: Standard styles for vignettes and other Bioconductor documents. R package version 2.28.0. 2023. DOI: 10.18129/B9.bioc.BiocStyle. URL: https://bioconductor.org/packages/BiocStyle.
[5] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.43. 2023. URL: https://yihui.org/knitr/.