Package 'gsean'

October 15, 2023

Type Package

Title Gene Set Enrichment Analysis with Networks

Description Biological molecules in a living organism seldom work individually. They usually interact each other in a cooperative way. Biological process is too complicated to understand without considering such interactions. Thus, network-based procedures can be seen as powerful methods for studying complex process. However, many methods are devised for analyzing individual genes. It is said that techniques based on biological networks such as gene coexpression are more precise ways to represent information than those using lists of genes only. This package is aimed to integrate the gene expression and biological network. A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis.

Version 1.20.2

Date 2023-05-24

Author Dongmin Jung

Maintainer Dongmin Jung <dmdmjung@gmail.com>

Depends R (>= 3.5), fgsea, PPInfer

Suggests SummarizedExperiment, pasilla, org.Dm.eg.db, AnnotationDbi, knitr, plotly, WGCNA, rmarkdown

License Artistic-2.0

biocViews Software, StatisticalMethod, Network, GraphAndNetwork, GeneSetEnrichment, GeneExpression, NetworkEnrichment, Pathways, DifferentialExpression

NeedsCompilation no

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/gsean

git_branch RELEASE_3_17

git_last_commit a6e2269

git_last_commit_date 2023-05-24

Date/Publication 2023-10-15

R topics documented:

gsean-package	2
centrality_gsea	3
exprs2adj	4
GO_dme	5
gsean	5
KEGG_hsa	7
label_prop_gsea	7
	0
	- 9

Index

gsean-package

Gene Set Enrichment Analysis with Networks

Description

Biological molecules in a living organism seldom work individually. They usually interact each other in a cooperative way. Biological process is too complicated to understand without considering such interactions. Thus, network-based procedures can be seen as powerful methods for studying complex process. However, many methods are devised for analyzing individual genes. It is said that techniques based on biological networks such as gene co-expression are more precise ways to represent information than those using lists of genes only. This package is aimed to integrate the gene expression and biological network. A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

Dongmin Jung

Maintainer: Dongmin Jung <dmdmjung@gmail.com>

centrality_gsea

Description

GSEA is performed with centrality measure

Usage

Arguments

geneset	list of gene sets
х	Named vector of gene-level statistics. Names should be the same as in gene sets.
adjacency	adjacency matrix
pseudo	pseudo number for log2 transformation (default: 1)
nperm	number of permutations (default: 1000)
centrality	centrality measure, degree centrality or node strength is default
weightParam	weight parameter value for the centrality measure, equally weight if weight Param = 0 (default: 1)
minSize	minimal size of a gene set (default: 1)
maxSize	maximal size of a gene set (default: Inf)
gseaParam	GSEA parameter value (default: 1)
nproc	see fgsea::fgsea
BPPARAM	see fgsea::fgsea

Value

GSEA result

Author(s)

Dongmin Jung

See Also

fgsea::fgsea

Examples

```
data(examplePathways)
data(exampleRanks)
exampleRanks <- exampleRanks[1:100]
adjacency <- diag(length(exampleRanks))
rownames(adjacency) <- names(exampleRanks)
set.seed(1)
result.GSEA <- centrality_gsea(examplePathways, exampleRanks, adjacency)</pre>
```

exprs2adj

Convert gene expression data to adjacency matrix by using correlation coefficients

Description

A biological network is constructed from gene expression data and it is used for Gene Set Enrichment Analysis.

Usage

exprs2adj(x, pseudo = 1, ...)

Arguments

х	gene expression data
pseudo	pseudo number for log2 transformation (default: 1)
	additional parameters for correlation; see WGCNA::cor

Value

adjacency matrix

Author(s)

Dongmin Jung

See Also

fgsea::fgsea, WGCNA::cor

Examples

```
data(exampleRanks)
Names <- names(exampleRanks)
exprs <- matrix(rnorm(10*length(exampleRanks)), ncol = 10)
adjacency <- exprs2adj(exprs)</pre>
```

4

 GO_dme

Description

The data set contains all Gene Ontology terms for Drosophila melanogaster and genes are identified by gene ID. There are 2823 categories.

Usage

GO_dme

Format

a list of gene sets

Value

GO gene sets

Author(s)

Dongmin Jung

Source

http://www.go2msig.org/cgi-bin/prebuilt.cgi?taxid=7227

Examples

```
load(system.file("data", "GO_dme.rda", package = "gsean"))
```

gsean

Gene Set Enrichment Analysis with Networks

Description

GSEA or ORA is performed with networks from gene expression data

Usage

Arguments

geneset	list of gene sets
X	Named vector of gene-level statistics for GSEA or set of genes for ORA. Names should be the same as in gene sets.
exprs	gene expression data
pseudo	pseudo number for log2 transformation (default: 1)
threshold	threshold of correlation for nodes to be considered neighbors for ORA (default: 0.99)
nperm	number of permutations (default: 1000)
centrality	centrality measure, degree centrality or node strength is default
weightParam	weight parameter value for the centrality measure, equally weight if weight Param = 0 (default: 1)
minSize	minimal size of a gene set (default: 1)
maxSize	maximal size of a gene set (default: Inf)
gseaParam	GSEA parameter value (default: 1)
nproc	see fgsea::fgsea
BPPARAM	see fgsea::fgsea
corParam	additional parameters for correlation; see WGCNA::cor
tmax	maximum number of iterations for label propagtion (default: 10)
	additional parameters for label propagation; see RANKS::label.prop

Value

GSEA result

Author(s)

Dongmin Jung

See Also

exprs2adj, label_prop_gsea, centrality_gsea

Examples

```
data(examplePathways)
data(exampleRanks)
exampleRanks <- exampleRanks[1:100]
Names <- names(exampleRanks)
exprs <- matrix(rnorm(10*length(exampleRanks)), ncol = 10)
rownames(exprs) <- names(exampleRanks)
set.seed(1)
result.GSEA <- gsean(examplePathways, exampleRanks, exprs)</pre>
```

6

KEGG_hsa

Description

The data set contains 186 KEGG pathways for Drosophila melanogaster and genes are identified by gene symbol.

Usage

KEGG_hsa

Format

a list of gene sets

Value

KEGG gene sets

Author(s)

Dongmin Jung

Source

http://software.broadinstitute.org/gsea/msigdb/collections.jsp

Examples

```
load(system.file("data", "KEGG_hsa.rda", package = "gsean"))
```

label_prop_gsea Over-representaion analysis with the label propagation algorithm

Description

ORA is performed by GSEA with the label propagation algorithm

Usage

```
label_prop_gsea(geneset, x, adjacency, threshold = 0.99, nperm = 1000,
            minSize = 1, maxSize = Inf, gseaParam = 1, nproc = 0,
            BPPARAM = NULL, ...)
```

Arguments

geneset	list of gene sets
х	set of genes
adjacency	adjacency matrix
threshold	threshold of correlation for nodes to be considered neighbors (default: 0.99)
nperm	number of permutations (default: 1000)
minSize	minimal size of a gene set (default: 1)
maxSize	maximal size of a gene set (default: Inf)
gseaParam	GSEA parameter value (default: 1)
nproc	see fgsea::fgsea
BPPARAM	see fgsea::fgsea
	additional parameters for label propagation; see RANKS::label.prop

Value

GSEA result

Author(s)

Dongmin Jung

See Also

fgsea::fgsea

Examples

```
data(examplePathways)
data(exampleRanks)
exampleRanks <- exampleRanks[1:100]
geneNames <- names(exampleRanks)
set.seed(1)
x <- sample(geneNames, 10)
adjacency <- diag(length(exampleRanks))
rownames(adjacency) <- geneNames
result.GSEA <- label_prop_gsea(examplePathways, x, adjacency)</pre>
```

8

Index

centrality_gsea, 3

exprs2adj,4

GO_dme, 5 gsean, 5 gsean-package, 2

KEGG_hsa, 7

label_prop_gsea,7