cellCellSimulate
functionscTensor 2.10.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.3.0 RC (2023-04-13 r84257)
## Platform: x86_64-apple-darwin20 (64-bit)
## Running under: macOS Monterey 12.6.4
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
##
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/New_York
## tzcode source: internal
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.14.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.17.0
## [5] GO.db_3.17.0
## [6] OrganismDbi_1.42.0
## [7] GenomicFeatures_1.52.0
## [8] AnnotationDbi_1.62.1
## [9] SingleCellExperiment_1.22.0
## [10] SummarizedExperiment_1.30.1
## [11] Biobase_2.60.0
## [12] GenomicRanges_1.52.0
## [13] GenomeInfoDb_1.36.0
## [14] IRanges_2.34.0
## [15] S4Vectors_0.38.1
## [16] MatrixGenerics_1.12.0
## [17] matrixStats_0.63.0
## [18] scTensor_2.10.0
## [19] RSQLite_2.3.1
## [20] LRBaseDbi_2.10.0
## [21] AnnotationHub_3.8.0
## [22] BiocFileCache_2.8.0
## [23] dbplyr_2.3.2
## [24] BiocGenerics_0.46.0
## [25] BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] rTensor_1.4.8 GSEABase_1.62.0
## [3] progress_1.2.2 goftest_1.2-3
## [5] Biostrings_2.68.0 vctrs_0.6.2
## [7] spatstat.random_3.1-5 digest_0.6.31
## [9] png_0.1-8 registry_0.5-1
## [11] ggrepel_0.9.3 deldir_1.0-6
## [13] parallelly_1.35.0 magick_2.7.4
## [15] MASS_7.3-60 reshape2_1.4.4
## [17] httpuv_1.6.11 foreach_1.5.2
## [19] qvalue_2.32.0 withr_2.5.0
## [21] xfun_0.39 ggfun_0.0.9
## [23] ellipsis_0.3.2 survival_3.5-5
## [25] memoise_2.0.1 hexbin_1.28.3
## [27] gson_0.1.0 tidytree_0.4.2
## [29] zoo_1.8-12 pbapply_1.7-0
## [31] entropy_1.3.1 prettyunits_1.1.1
## [33] KEGGREST_1.40.0 promises_1.2.0.1
## [35] httr_1.4.6 restfulr_0.0.15
## [37] schex_1.14.0 globals_0.16.2
## [39] fitdistrplus_1.1-11 miniUI_0.1.1.1
## [41] generics_0.1.3 DOSE_3.26.1
## [43] reactome.db_1.84.0 babelgene_22.9
## [45] concaveman_1.1.0 curl_5.0.0
## [47] fields_14.1 zlibbioc_1.46.0
## [49] ggraph_2.1.0 polyclip_1.10-4
## [51] ca_0.71.1 GenomeInfoDbData_1.2.10
## [53] RBGL_1.76.0 interactiveDisplayBase_1.38.0
## [55] xtable_1.8-4 stringr_1.5.0
## [57] evaluate_0.21 S4Arrays_1.0.4
## [59] hms_1.1.3 bookdown_0.34
## [61] irlba_2.3.5.1 colorspace_2.1-0
## [63] filelock_1.0.2 visNetwork_2.1.2
## [65] ROCR_1.0-11 reticulate_1.28
## [67] spatstat.data_3.0-1 magrittr_2.0.3
## [69] lmtest_0.9-40 Rgraphviz_2.44.0
## [71] later_1.3.1 viridis_0.6.3
## [73] ggtree_3.8.0 lattice_0.21-8
## [75] misc3d_0.9-1 spatstat.geom_3.2-1
## [77] future.apply_1.10.0 genefilter_1.82.1
## [79] plot3D_1.4 scattermore_1.0
## [81] XML_3.99-0.14 shadowtext_0.1.2
## [83] cowplot_1.1.1 RcppAnnoy_0.0.20
## [85] pillar_1.9.0 nlme_3.1-162
## [87] iterators_1.0.14 compiler_4.3.0
## [89] stringi_1.7.12 Category_2.66.0
## [91] TSP_1.2-4 tensor_1.5
## [93] dendextend_1.17.1 GenomicAlignments_1.36.0
## [95] plyr_1.8.8 msigdbr_7.5.1
## [97] BiocIO_1.10.0 crayon_1.5.2
## [99] abind_1.4-5 gridGraphics_0.5-1
## [101] sp_1.6-0 graphlayouts_1.0.0
## [103] bit_4.0.5 dplyr_1.1.2
## [105] fastmatch_1.1-3 tagcloud_0.6
## [107] codetools_0.2-19 bslib_0.4.2
## [109] plotly_4.10.1 mime_0.12
## [111] splines_4.3.0 Rcpp_1.0.10
## [113] HDO.db_0.99.1 knitr_1.42
## [115] blob_1.2.4 utf8_1.2.3
## [117] BiocVersion_3.17.1 listenv_0.9.0
## [119] checkmate_2.2.0 ggplotify_0.1.0
## [121] tibble_3.2.1 Matrix_1.5-4
## [123] tweenr_2.0.2 pkgconfig_2.0.3
## [125] tools_4.3.0 cachem_1.0.8
## [127] viridisLite_0.4.2 DBI_1.1.3
## [129] graphite_1.46.0 fastmap_1.1.1
## [131] rmarkdown_2.21 scales_1.2.1
## [133] grid_4.3.0 outliers_0.15
## [135] ica_1.0-3 Seurat_4.3.0
## [137] Rsamtools_2.16.0 sass_0.4.6
## [139] patchwork_1.1.2 BiocManager_1.30.20
## [141] dotCall64_1.0-2 graph_1.78.0
## [143] RANN_2.6.1 farver_2.1.1
## [145] tidygraph_1.2.3 scatterpie_0.1.9
## [147] yaml_2.3.7 AnnotationForge_1.42.0
## [149] rtracklayer_1.60.0 cli_3.6.1
## [151] purrr_1.0.1 webshot_0.5.4
## [153] leiden_0.4.3 lifecycle_1.0.3
## [155] uwot_0.1.14 backports_1.4.1
## [157] BiocParallel_1.34.1 annotate_1.78.0
## [159] MeSHDbi_1.36.0 rjson_0.2.21
## [161] gtable_0.3.3 ggridges_0.5.4
## [163] progressr_0.13.0 parallel_4.3.0
## [165] ape_5.7-1 jsonlite_1.8.4
## [167] seriation_1.4.2 bitops_1.0-7
## [169] ggplot2_3.4.2 bit64_4.0.5
## [171] assertthat_0.2.1 Rtsne_0.16
## [173] yulab.utils_0.0.6 ReactomePA_1.44.0
## [175] spatstat.utils_3.0-3 SeuratObject_4.1.3
## [177] heatmaply_1.4.2 jquerylib_0.1.4
## [179] highr_0.10 nnTensor_1.1.13
## [181] GOSemSim_2.26.0 ccTensor_1.0.2
## [183] lazyeval_0.2.2 shiny_1.7.4
## [185] htmltools_0.5.5 enrichplot_1.20.0
## [187] sctransform_0.3.5 rappdirs_0.3.3
## [189] glue_1.6.2 tcltk_4.3.0
## [191] spam_2.9-1 XVector_0.40.0
## [193] RCurl_1.98-1.12 treeio_1.24.0
## [195] gridExtra_2.3 igraph_1.4.2
## [197] R6_2.5.1 tidyr_1.3.0
## [199] fdrtool_1.2.17 cluster_2.1.4
## [201] aplot_0.1.10 DelayedArray_0.26.2
## [203] tidyselect_1.2.0 plotrix_3.8-2
## [205] GOstats_2.66.0 maps_3.4.1
## [207] xml2_1.3.4 ggforce_0.4.1
## [209] future_1.32.0 munsell_0.5.0
## [211] KernSmooth_2.23-21 data.table_1.14.8
## [213] htmlwidgets_1.6.2 fgsea_1.26.0
## [215] RColorBrewer_1.1-3 biomaRt_2.56.0
## [217] rlang_1.1.1 spatstat.sparse_3.0-1
## [219] meshr_2.6.0 spatstat.explore_3.2-1
## [221] fansi_1.0.4