STRINGdb Package Vignette

Andrea Franceschini

15 March 2015

1 INTRODUCTION

STRING (https://www.string-db.org) is a database of known and predicted protein-protein interac-
tions. The interactions include direct (physical) and indirect (functional) associations. The database
contains information from numerous sources, including experimental repositories, computational pre-
diction methods and public text collections. Each interaction is associated with a combined confidence
score that integrates the various evidences. We currently cover over 24 milions proteins from 5090
organisms.

As you will learn in this guide, the STRING database can be usefull to add meaning to list of genes
(e.g. the best hits coming out from a screen or the most differentially expressed genes coming out from
a Microarray /RNAseq experiment.)

We provide the STRINGdb R package in order to facilitate our users in accessing the STRING
database from R. In this guide we explain, with examples, most of the package’s features and function-
alities.

In the STRINGdb R package we use the new ReferenceClasses of R (search for "ReferenceClasses"
in the R documentation.). Besides we make use of the iGraph package (http://igraph.sourceforge.net)
as a data structure to represent our protein-protein interaction network.

To begin, you should first know the NCBI taxonomy identifiers of the organism on which you have
performed the experiment (e.g. 9606 for Human, 10090 for mouse). If you don’t know that, you can
search the NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/taxonomy) or start looking at our species
table (that you can also use to verify that your organism is represented in the STRING database).
Hence, if your species is not Human (i.e. our default species), you can find it and their taxonomy identi-
fiers on STRING webpage under the ’organisms’ section (https://string-db.org/cgi/input.pl?input _page
or download the full list in the download section of STRING website.

> library (STRINGdb)
> string_db <- STRINGdb$new(version="11.5", species=9606,

_active_form=or

+ score_threshold=200, network_type="full", input_directory="")

As it has been shown in the above commands, you start instantiating the STRINGdb reference class.
In the constructor of the class you can also define the STRING version to be used and a threshold for
the combined scores of the interactions, such that any interaction below that threshold is not loaded in
the object (by default the score threshold is set to 400).

You can also specify the network type "functional” for full functional STRING network or "physical"
for physical subnetwork, which link only the proteins which share a physical complex.

Besides, if you specify a local directory to the parameter input-directory, the database files will be
downloaded into this directory and most of the methods can be used off-line. Otherwise, the database
files will be saved and cached in a temporary directory that will be cleaned automatically when the R
session is closed.

For a better understanding of the package two other commands can be useful:

> STRINGdb$methods () # To list all the methods available.
[1] ".objectPackage" ".objectParent"
[3] "add_diff_exp_color" "add_proteins_description"
[5] "benchmark_ppi" "benchmark_ppi_pathway_view"
[7] "callSuper" "copy"
[9] "enrichment_heatmap" "export"

[11] "field" "getClass"

[13] "getRefClass" "get_aliases"

[15] "get_annotations" "get_bioc_graph"

[17] "get_clusters" "get_enrichment"

[19] "get_graph" "get_homologs"

[21] "get_homologs_besthits" "get_homology_graph"

[23] "get_interactions" "get_link"

[25] "get_neighbors" "get_paralogs"

[27] "get_pathways_benchmarking_blackList" "get_png"

[29] "get_ppi_enrichment" "get_ppi_enrichment_full"
[31] "get_proteins" "get_pubmed"

[33] "get_pubmed_interaction" "get_subnetwork"

[35] "get_summary" "get_term_proteins"

[37] "import" "initFields"

[39] "initialize" "load"

[41] "load_all" "map"

[43] "mp" "plot_network"

[45] "plot_ppi_enrichment" "post_payload"

[47] "ppi_enrichment" "remove_homologous_interactions"
[49] "set_background" "show"

[61] "show#envRefClass" "trace"

[63] "untrace" "usingMethods"

> STRINGdb$help("get_graph") # To visualize their documentation.

Call:

$get_graph()

Description:
Return an igraph object with the entire STRING network.
We invite the user to use the functions of the iGraph package to conveniently
search/analyze the network.

References:
Csardi G, Nepusz T: The igraph software package for complex network research,
InterJournal, Complex Systems 1695. 2006.
http://igraph.sf.net

See Also:
In order to simplify the most common tasks, we do also provide convenient functions
that wrap some iGraph functions.
get_interactions(string_ids) # returns the interactions in between the input proteins

get_neighbors(string_ids) # Get the neighborhoods of a protein (or of a vector of proteins).
get_subnetwork(string_ids) # returns a subgraph from the given input proteins
Author(s):

Andrea Franceschini

For all the methods that we are going to explain below, you can always use the help function in
order to get additional information/parameters with respect to those explained in this guide.

As an example, we use the analyzed data of a microarray study taken from GEO (Gene Expression
Omnibus, GSE9008). This study investigates the activity of Resveratrol, a natural phytoestrogen found
in red wine and a variety of plants, in A549 lung cancer cells. Microarray gene expression profiling after
48 hours exposure to Revestarol has been performed and compared to a control composed by A549
lung cancer cells threated only with ethanol. This data is already analyzed for differential expression
using the limma package: the genes are sorted by fdr corrected pvalues and the log fold change of the
differential expression is also reported in the table.

> data(diff_exp_examplel)
> head(diff_exp_examplel)

pvalue logFC gene
1 0.0001018 3.333461 VSTM2L
2 0.0001392 3.822383 TBC1D2
3 0.0001720 3.306056 LENG9
4 0.0001739 3.024605 TMEM27
5 0.0001990 3.854414 L0C100506014
6 0.0002393 3.082052 TSPAN1

As a first step, we map the gene names to the STRING database identifiers using the "map" method.
In this particular example, we map from gene HUGO names, but our mapping function supports several
other common identifiers (e.g. Entrez GenelD, ENSEMBL proteins, RefSeq transcripts ... etc.).

The map function adds an additional column with STRING identifiers to the dataframe that is passed
as first parameter.

> examplel_mapped <- string_db$map(diff_exp_examplel, "gene", removeUnmappedRows = TRUE)

Warning: we couldn't map to STRING 15% of your identifiers

As you may have noticed, the previous command prints a warning showing the number of genes
that we failed to map. In this particular example, we cannot map all the probes of the microarray that
refer to position of the chromosome that are not assigned to a real gene (i.e. all the LOC genes). If
we remove all these LOC genes before the mapping we obtain a much lower percentage of unmapped
genes (i.e. < 6 %).

If you set to FALSE the "removeUnmappedRows" parameter, than the rows which corresponds to
unmapped genes are left and you can manually inspect them.

Finally, we extract the most significant 200 genes and we produce an image of the STRING network
for those. The image shows clearly the genes and how they are possibly functionally related. On the
top of the plot, we insert a pvalue that represents the probability that you can expect such an equal or
greater number of interactions by chance.

> hits <- examplel_mapped$STRING_id[1:200]

> string_db$plot_network(hits)

proteins: 200
interactions: 382
expected interactions: 229 (p—value: 0)

&

RePMS2

GrRss

e o

2 PAYLOAD MECHANISM

This R library provides the ability to interact with the STRING payload mechanism. The payload
appears as an additional colored "halo" around the bubbles.

For example, this allows to color in green the genes that are down-regulated and in red the genes
that are up-regulated. For this mechanism to work, we provide a function that posts the information
on our web server.

> # filter by p-value and add a color column

> # (i.e. green down-regulated gened and red for up-regulated genes)

> examplel_mapped_pvalO5 <- string_db$add_diff_exp_color(subset (examplel_mapped, pvalue<0.05),
+ logFcColStr="10gFC")

> # post payload information to the STRING server

> payload_id <- string_db$post_payload(examplel_mapped_pvalO5$STRING_id,

+ colors=examplel_mapped_pvalO5$color)

> # display a STRING network png with the "halo"

> string _db$plot_network(hits, payload_id=payload_id)

proteins: 200
interactions: 382

expected interactions: 229 (p—value: 0)

8
8

H

m . ®
3 3 8 g 3 m W a M
Yoo, I ®l Yy 0d/i/ |, ®
N ©"® ©,

§
E

3 ENRICHMENT

We provide a method to compute the enrichment in Gene Ontology (Process, Function and Component),
KEGG and Reactome pathways, PubMed publications, UniProt Keywords, and PFAM /INTERPRO/SMART
domains for your set of proteins all in one simple call. The enrichment itself is computed using an hy-
pergeometric test and the FDR is calculated using Benjamini-Hochberg procedure.

> enrichment <- string_db$get_enrichment(hits)
> head(enrichment, n=20)

category term number_of_genes number_of_genes_in_background

1 Process G0:0006952 34 1296
2 Process G0:0010951 12 248
3 Process G0:0051707 31 1256
4 Component GO:0005576 66 4166
5 Component GO0:0005615 55 3195
6 Component GO0:0070062 41 2099
7 Component GO0:1903561 42 2121
8 TISSUES BT0:0004850 10 170
9 Keyword KW-0732 57 3233
10 Keyword KW-0391 17 522
11 Keyword KW-0964 37 1818
12 KEGG hsa04115 6 72
13 WikiPathways WP4963 8 67

ncbiTaxonId
1 9606
2 9606
3 9606
4 9606
5 9606
6 9606
7 9606
8 9606
9 9606
10 9606
11 9606
12 9606
13 9606
1
2
3
4 9606.ENSP00000008938,9606.ENSP00000014914,9606 .ENSP00000187762,9606 . ENSP00000216286,9606 . ENSP0O000(
5
6
7
8
9
10
11
12
13

© 00N O WN -

10
11
12
13

p_value
1 5.07e-07
2 1.43e-05
3 5.89e-06
4 9.03e-05
5 5.17e-05
6 4.18e-05
7 2.40e-05
8 1.54e-05
9 1.78e-05
10 3.64e-05
11 4.61e-05
12 1.40e-04
13 9.02e-07

O O OO OO OOOOOOOoOOo

fdr

.00650
.03780
.03780
.04080
.04080
.04080
.04080
.02940
.01200
.01230
.01230
.04690
.00061

description

Defense response

Negative regulation of endopeptidase activity
Response to other organism
Extracellular region
Extracellular space
Extracellular exosome
Extracellular vesicle

Bone marrow cell

Signal

Immunity

Secreted

p53 signaling pathway

p53 transcriptional gene network

PGLYRP1,GPRC5A, TMEM38A,NID2,C5,RARRES1,C4BPB,CD70,C3,ISLR,SERPINF1,THSD1,EPYC,LGALS3BP,C6, VAMPS, Cf

PGLYRP1,GPRC5A, TMEM38A,NID2,C5, RAT

PGLYRP1,NID2,C5,C4BPB,C3,ISLR,SI

If you have performed your experiment on a predefined set of proteins, it is important to run the
enrichment statistics using that set as a background (otherwise you would get a wrong p-value !). Hence,
before to launch the method above, you may want to set the background:

> backgroundV <- examplel_mapped$STRING_id[1:2000]

> string_db$set_background (backgroundV)

as an example, we use the first 2000 genes

You can also set the background when you instantiate the STRINGdb object:

> string_db <- STRINGdb$new(score_threshold=200, backgroundV = backgroundV)

If you just want to know terms are assigned to your set of proteins (and not necessary enriched) you
can use "get annotations" method. This method will output all the terms from most of the categories
(the exceptions are KEGG terms due to licensing issues and PubMed due to the size of the output)
that are associated with your set of proteins.

> annotations <- string_db$get_annotations(hits)
> head(annotations, n=20)

category term_id number_of_genes ratio_in_set species

1 COMPARTMENTS GOCC:0000109 1 0.005 9606
2 COMPARTMENTS GOCC:0000139 2 0.010 9606
3 COMPARTMENTS GOCC:0000151 1 0.005 9606
4 COMPARTMENTS GOCC:0000228 1 0.005 9606
5 COMPARTMENTS GOCC:0000307 1 0.005 9606
6 COMPARTMENTS GOCC:0000323 6 0.030 9606
7 COMPARTMENTS GOCC:0000502 1 0.005 9606
8 COMPARTMENTS GOCC:0000785 2 0.010 9606
9 COMPARTMENTS GOCC:0000786 1 0.005 9606
10 COMPARTMENTS GOCC:0000791 1 0.005 9606
11 COMPARTMENTS GOCC:0001533 1 0.005 9606
12 COMPARTMENTS GOCC:0001650 1 0.005 9606
13 COMPARTMENTS GOCC:0001669 1 0.005 9606
14 COMPARTMENTS GOCC:0001725 1 0.005 9606
15 COMPARTMENTS GOCC:0001726 2 0.010 9606
16 COMPARTMENTS GOCC:0002133 1 0.005 9606
17 COMPARTMENTS GOCC:0005576 40 0.200 9606
18 COMPARTMENTS GOCC:0005577 1 0.005 9606
19 COMPARTMENTS GOCC:0005579 3 0.015 9606
20 COMPARTMENTS GOCC:0005604 2 0.010 9606
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 9606 .ENSP00000008938,9606 . ENSP00000216286,9606 . ENSP00000223642,9606 . ENSP00000237696 ,9606 . ENSPO000C(
18

19

20

1

2

3

4

5

6

7

8

10

10
11
12
13
14
15
16
17 PGLYRP1,NID2,C5,RARRES1,C4BPB,CD70,C3,SERPINF1,THSD1,LGALS3BP,C6,CSTA,ANXA3,PTH,CA2,TIMP4,DEFB1, PS
18
19
20

description
1 Nucleotide-excision repair complex
2 Golgi membrane
3 Ubiquitin ligase complex
4 Nuclear chromosome
5 Cyclin-dependent protein kinase holoenzyme complex
6 Lytic vacuole
7 Proteasome complex
8 Chromatin
9 Nucleosome
10 Euchromatin
11 Cornified envelope
12 Fibrillar center
13 Acrosomal vesicle
14 Stress fiber
15 Ruffle
16 Polycystin complex
17 Extracellular region
18 Fibrinogen complex
19 Membrane attack complex
20 Basement membrane

4 CLUSTERING

The iGraph package provides several clustering/community algorithms: "fastgreedy", "walktrap", "sp-

inglass", "edge.betweenness". We encapsulate this in an easy-to-use function that returns the clusters
in a list.

> # get clusters
> clustersList <- string_db$get_clusters (examplel_mapped$STRING_id[1:600])

plot first 4 clusters

par (mfrow=c(2,2))

for(i in seq(1:4))1{
string_db$plot_network(clustersList[[i]])
}

+ + VvV vV

11

expected interactions: 13 (p—value: 0)

proteins: 74
interactions: 137

proteins: 119
interactions: 934

expected interactions: 175 (p—value: 0)

proteins: 46
interactions: 59

expected interactions: 8 (p—value: 0)

proteins: 36
interactions: 41

expected interactions: 3 (p—value:

0)

e /
. [® @
® [® @
R ©
/ @ g @
&
o /
® -
)
Q"
,,,,, o0
&
S e o @
e~ o
- ©
-
© -
e’“ o
®
&

12

5 ADDITIONAL PROTEIN INFORMATION

You can get a table that contains all the proteins that are present in our database of the species of
interest. The protein table also include the preferred name, the size and a short description of each
protein.

> string_proteins <- string_db$get_proteins()

In the following section we will show how to query STRING with R on some specific proteins. In
the examples, we will use the famous tumor proteins TP53 and ATM .

First we need to get the STRING identifier of those proteins, using our mp method:

> tp53 = string_db$mp("tp53")
> atm = string_db$mp("atm")

The mp method (i.e. map proteins) is an alternative to our map method, to be used when you need
to map only one or few proteins.
It takes in input a vector of protein aliases and returns a vector with the STRING identifiers of those
proteins.

Using the following method, you can see the proteins that interact with one or more of your proteins:

> string_db$get_neighbors(c(tp53, atm))

It is also possible to retrieve the interactions that connect certain input proteins between each other.
Using the "get interactions" method we can clearly see that TP53 and ATM interact with each other
with a good evidence/score.

> string_db$get_interactions(c(tp53, atm))

from to combined_score
1 9606 .ENSP00000269305 9606 .ENSP00000278616 999
2 9606.ENSP00000269305 9606.ENSP00000278616 999

STRING provides a way to get homologous proteins: in our database we store ALL-AGAINST-
ALL alignments within all 5090 organisms. You can retrive all of the paralogs of the protein using
"get paralogs" method.

> # Get all homologs of TP53 in human.
> string_db$get_paralogs (tp53)

STRING also stores best hits (as measured by bitscore) between the proteins from different species.
"get _homologs besthits" lets you retrieve these homologs.

13

> # get the best hits of the following protein in all the STRING species
> string_db$get_homologs_besthits (tp53)

. or you can specify the species of interest (i.e. all the blast hits):

\

get the homologs of the following two proteins in the mouse (i.e. species_id=10090)
> string_db$get_homologs_besthits(c(tp53, atm), target_species_id=10090, bitscore_threshold=60)

6 CITATION

Please cite:

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang
T, Bork P, Jensen LJ, von Mering C. 'The STRING database in 2021: customizable protein-protein

networks, and functional characterization of user-uploaded gene/measurement sets.” Nucleic Acids Res.
2021 Jan 8;49(D1):D605-12

14

