snifter 1.8.0
snifter provides an R wrapper for the openTSNE implementation of fast interpolated t-SNE (FI-tSNE). It is based on basilisk and reticulate. This vignette aims to provide a brief overview of typical use when applied to scRNAseq data, but it does not provide a comprehensive guide to the available options in the package.
It is highly advisable to review the documentation in snifter and the openTSNE documentation to gain a full understanding of the available options.
We will illustrate the use of snifter by generating some toy data. First, we’ll load the needed libraries, and set a random seed to ensure the simulated data are reproducible (note: it is good practice to ensure that a t-SNE embedding is robust by running the algorithm multiple times).
library("snifter")
library("ggplot2")
theme_set(theme_bw())
set.seed(42)
n_obs <- 500
n_feats <- 200
means_1 <- rnorm(n_feats)
means_2 <- rnorm(n_feats)
counts_a <- replicate(n_obs, rnorm(n_feats, means_1))
counts_b <- replicate(n_obs, rnorm(n_feats, means_2))
counts <- t(cbind(counts_a, counts_b))
label <- rep(c("A", "B"), each = n_obs)
The main functionality of the package lies in the fitsne
function. This function returns a matrix of t-SNE co-ordinates. In this case,
we pass in the 20 principal components computed based on the
log-normalised counts. We colour points based on the discrete
cell types identified by the authors.
fit <- fitsne(counts, random_state = 42L)
ggplot() +
aes(fit[, 1], fit[, 2], colour = label) +
geom_point(pch = 19) +
scale_colour_discrete(name = "Cluster") +
labs(x = "t-SNE 1", y = "t-SNE 2")
The openTNSE package, and by extension snifter, also allows the embedding of new data into an existing t-SNE embedding. Here, we will split the data into “training” and “test” sets. Following this, we generate a t-SNE embedding using the training data, and project the test data into this embedding.
test_ind <- sample(nrow(counts), nrow(counts) / 2)
train_ind <- setdiff(seq_len(nrow(counts)), test_ind)
train_mat <- counts[train_ind, ]
test_mat <- counts[test_ind, ]
train_label <- label[train_ind]
test_label <- label[test_ind]
embedding <- fitsne(train_mat, random_state = 42L)
Once we have generated the embedding, we can now project
the unseen test
data into this t-SNE embedding.
new_coords <- project(embedding, new = test_mat, old = train_mat)
ggplot() +
geom_point(
aes(embedding[, 1], embedding[, 2],
colour = train_label,
shape = "Train"
)
) +
geom_point(
aes(new_coords[, 1], new_coords[, 2],
colour = test_label,
shape = "Test"
)
) +
scale_colour_discrete(name = "Cluster") +
scale_shape_discrete(name = NULL) +
labs(x = "t-SNE 1", y = "t-SNE 2")
sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.5 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ggplot2_3.3.6 snifter_1.8.0 BiocStyle_2.26.0
#>
#> loaded via a namespace (and not attached):
#> [1] reticulate_1.26 tidyselect_1.2.0 xfun_0.34
#> [4] bslib_0.4.0 lattice_0.20-45 basilisk.utils_1.10.0
#> [7] colorspace_2.0-3 vctrs_0.5.0 generics_0.1.3
#> [10] htmltools_0.5.3 yaml_2.3.6 utf8_1.2.2
#> [13] rlang_1.0.6 jquerylib_0.1.4 pillar_1.8.1
#> [16] glue_1.6.2 withr_2.5.0 DBI_1.1.3
#> [19] lifecycle_1.0.3 stringr_1.4.1 munsell_0.5.0
#> [22] gtable_0.3.1 evaluate_0.17 labeling_0.4.2
#> [25] knitr_1.40 fastmap_1.1.0 parallel_4.2.1
#> [28] fansi_1.0.3 highr_0.9 Rcpp_1.0.9
#> [31] scales_1.2.1 filelock_1.0.2 BiocManager_1.30.19
#> [34] cachem_1.0.6 magick_2.7.3 jsonlite_1.8.3
#> [37] farver_2.1.1 basilisk_1.10.0 dir.expiry_1.6.0
#> [40] png_0.1-7 digest_0.6.30 stringi_1.7.8
#> [43] bookdown_0.29 dplyr_1.0.10 rprojroot_2.0.3
#> [46] grid_4.2.1 here_1.0.1 cli_3.4.1
#> [49] tools_4.2.1 magrittr_2.0.3 sass_0.4.2
#> [52] tibble_3.1.8 pkgconfig_2.0.3 Matrix_1.5-1
#> [55] assertthat_0.2.1 rmarkdown_2.17 R6_2.5.1
#> [58] compiler_4.2.1