Contents

1 Introduction

Here, we explain the way to generate CCI simulation data. scTensor has a function cellCellSimulate to generate the simulation data.

The simplest way to generate such data is cellCellSimulate with default parameters.

suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

This function internally generate the parameter sets by newCCSParams, and the values of the parameter can be changed, and specified as the input of cellCellSimulate by users as follows.

# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
##   ..@ nGene  : num 1000
##   ..@ nCell  : num [1:3] 50 50 50
##   ..@ cciInfo:List of 4
##   .. ..$ nPair: num 500
##   .. ..$ CCI1 :List of 4
##   .. .. ..$ LPattern: num [1:3] 1 0 0
##   .. .. ..$ RPattern: num [1:3] 0 1 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI2 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 1 0
##   .. .. ..$ RPattern: num [1:3] 0 0 1
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI3 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 0 1
##   .. .. ..$ RPattern: num [1:3] 1 0 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   ..@ lambda : num 1
##   ..@ seed   : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
    nPair=500, # Total number of L-R pairs
    # 1st CCI
    CCI1=list(
        LPattern=c(1,0,0), # Only 1st cell type has this pattern
        RPattern=c(0,1,0), # Only 2nd cell type has this pattern
        nGene=50, # 50 pairs are generated as CCI1
        fc="E10"), # Degree of differential expression (Fold Change)
    # 2nd CCI
    CCI2=list(
        LPattern=c(0,1,0),
        RPattern=c(0,0,1),
        nGene=30,
        fc="E100")
    )
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123

# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

The output object sim has some attributes as follows.

Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.

dim(sim$input)
## [1] 1000   60
sim$input[1:2,1:3]
##       Cell1 Cell2 Cell3
## Gene1  9105     2     0
## Gene2     4    37   850

Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.

dim(sim$LR)
## [1] 500   2
sim$LR[1:10,]
##    GENEID_L GENEID_R
## 1     Gene1   Gene81
## 2     Gene2   Gene82
## 3     Gene3   Gene83
## 4     Gene4   Gene84
## 5     Gene5   Gene85
## 6     Gene6   Gene86
## 7     Gene7   Gene87
## 8     Gene8   Gene88
## 9     Gene9   Gene89
## 10   Gene10   Gene90
sim$LR[46:55,]
##    GENEID_L GENEID_R
## 46   Gene46  Gene126
## 47   Gene47  Gene127
## 48   Gene48  Gene128
## 49   Gene49  Gene129
## 50   Gene50  Gene130
## 51   Gene51  Gene131
## 52   Gene52  Gene132
## 53   Gene53  Gene133
## 54   Gene54  Gene134
## 55   Gene55  Gene135
sim$LR[491:500,]
##     GENEID_L GENEID_R
## 491  Gene571  Gene991
## 492  Gene572  Gene992
## 493  Gene573  Gene993
## 494  Gene574  Gene994
## 495  Gene575  Gene995
## 496  Gene576  Gene996
## 497  Gene577  Gene997
## 498  Gene578  Gene998
## 499  Gene579  Gene999
## 500  Gene580 Gene1000

Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.

length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 
##   "Cell1"   "Cell2"   "Cell3"   "Cell4"   "Cell5"   "Cell6"
table(names(sim$celltypes))
## 
## Celltype1 Celltype2 Celltype3 
##        20        20        20

Session information

## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] scTGIF_1.12.0                          
##  [2] Homo.sapiens_1.3.1                     
##  [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [4] org.Hs.eg.db_3.16.0                    
##  [5] GO.db_3.16.0                           
##  [6] OrganismDbi_1.40.0                     
##  [7] GenomicFeatures_1.50.0                 
##  [8] AnnotationDbi_1.60.0                   
##  [9] SingleCellExperiment_1.20.0            
## [10] SummarizedExperiment_1.28.0            
## [11] Biobase_2.58.0                         
## [12] GenomicRanges_1.50.0                   
## [13] GenomeInfoDb_1.34.0                    
## [14] IRanges_2.32.0                         
## [15] S4Vectors_0.36.0                       
## [16] MatrixGenerics_1.10.0                  
## [17] matrixStats_0.62.0                     
## [18] scTensor_2.8.0                         
## [19] RSQLite_2.2.18                         
## [20] LRBaseDbi_2.8.0                        
## [21] AnnotationHub_3.6.0                    
## [22] BiocFileCache_2.6.0                    
## [23] dbplyr_2.2.1                           
## [24] BiocGenerics_0.44.0                    
## [25] BiocStyle_2.26.0                       
## 
## loaded via a namespace (and not attached):
##   [1] ica_1.0-3                     Rsamtools_2.14.0             
##   [3] foreach_1.5.2                 lmtest_0.9-40                
##   [5] crayon_1.5.2                  spatstat.core_2.4-4          
##   [7] MASS_7.3-58.1                 nlme_3.1-160                 
##   [9] backports_1.4.1               GOSemSim_2.24.0              
##  [11] MeSHDbi_1.34.0                rlang_1.0.6                  
##  [13] XVector_0.38.0                HDO.db_0.99.1                
##  [15] ROCR_1.0-11                   irlba_2.3.5.1                
##  [17] nnTensor_1.1.8                ca_0.71.1                    
##  [19] filelock_1.0.2                GOstats_2.64.0               
##  [21] rjson_0.2.21                  BiocParallel_1.32.0          
##  [23] tagcloud_0.6                  bit64_4.0.5                  
##  [25] glue_1.6.2                    sctransform_0.3.5            
##  [27] parallel_4.2.1                spatstat.sparse_3.0-0        
##  [29] dotCall64_1.0-2               tcltk_4.2.1                  
##  [31] DOSE_3.24.0                   spatstat.geom_3.0-3          
##  [33] tidyselect_1.2.0              SeuratObject_4.1.2           
##  [35] fitdistrplus_1.1-8            XML_3.99-0.12                
##  [37] tidyr_1.2.1                   zoo_1.8-11                   
##  [39] GenomicAlignments_1.34.0      xtable_1.8-4                 
##  [41] magrittr_2.0.3                evaluate_0.17                
##  [43] ggplot2_3.3.6                 cli_3.4.1                    
##  [45] zlibbioc_1.44.0               miniUI_0.1.1.1               
##  [47] sp_1.5-0                      bslib_0.4.0                  
##  [49] rpart_4.1.19                  fastmatch_1.1-3              
##  [51] treeio_1.22.0                 maps_3.4.1                   
##  [53] fields_14.1                   shiny_1.7.3                  
##  [55] xfun_0.34                     gson_0.0.9                   
##  [57] cluster_2.1.4                 tidygraph_1.2.2              
##  [59] TSP_1.2-1                     KEGGREST_1.38.0              
##  [61] tibble_3.1.8                  interactiveDisplayBase_1.36.0
##  [63] ggrepel_0.9.1                 ape_5.6-2                    
##  [65] listenv_0.8.0                 dendextend_1.16.0            
##  [67] Biostrings_2.66.0             png_0.1-7                    
##  [69] future_1.28.0                 withr_2.5.0                  
##  [71] bitops_1.0-7                  ggforce_0.4.1                
##  [73] RBGL_1.74.0                   plyr_1.8.7                   
##  [75] GSEABase_1.60.0               pillar_1.8.1                 
##  [77] cachem_1.0.6                  graphite_1.44.0              
##  [79] vctrs_0.5.0                   ellipsis_0.3.2               
##  [81] generics_0.1.3                plot3D_1.4                   
##  [83] outliers_0.15                 tools_4.2.1                  
##  [85] entropy_1.3.1                 munsell_0.5.0                
##  [87] tweenr_2.0.2                  fgsea_1.24.0                 
##  [89] DelayedArray_0.24.0           rtracklayer_1.58.0           
##  [91] fastmap_1.1.0                 compiler_4.2.1               
##  [93] abind_1.4-5                   httpuv_1.6.6                 
##  [95] plotly_4.10.0                 rgeos_0.5-9                  
##  [97] GenomeInfoDbData_1.2.9        gridExtra_2.3                
##  [99] lattice_0.20-45               deldir_1.0-6                 
## [101] visNetwork_2.1.2              AnnotationForge_1.40.0       
## [103] utf8_1.2.2                    later_1.3.0                  
## [105] dplyr_1.0.10                  jsonlite_1.8.3               
## [107] ccTensor_1.0.2                concaveman_1.1.0             
## [109] scales_1.2.1                  graph_1.76.0                 
## [111] tidytree_0.4.1                pbapply_1.5-0                
## [113] genefilter_1.80.0             lazyeval_0.2.2               
## [115] promises_1.2.0.1              goftest_1.2-3                
## [117] spatstat.utils_3.0-1          reticulate_1.26              
## [119] checkmate_2.1.0               rmarkdown_2.17               
## [121] cowplot_1.1.1                 schex_1.12.0                 
## [123] webshot_0.5.4                 Rtsne_0.16                   
## [125] uwot_0.1.14                   igraph_1.3.5                 
## [127] survival_3.4-0                yaml_2.3.6                   
## [129] plotrix_3.8-2                 htmltools_0.5.3              
## [131] memoise_2.0.1                 rTensor_1.4.8                
## [133] BiocIO_1.8.0                  Seurat_4.2.0                 
## [135] seriation_1.4.0               graphlayouts_0.8.3           
## [137] viridisLite_0.4.1             digest_0.6.30                
## [139] assertthat_0.2.1              ReactomePA_1.42.0            
## [141] mime_0.12                     rappdirs_0.3.3               
## [143] registry_0.5-1                spam_2.9-1                   
## [145] yulab.utils_0.0.5             future.apply_1.9.1           
## [147] misc3d_0.9-1                  data.table_1.14.4            
## [149] blob_1.2.3                    splines_4.2.1                
## [151] RCurl_1.98-1.9                hms_1.1.2                    
## [153] colorspace_2.0-3              BiocManager_1.30.19          
## [155] aplot_0.1.8                   sass_0.4.2                   
## [157] Rcpp_1.0.9                    bookdown_0.29                
## [159] RANN_2.6.1                    enrichplot_1.18.0            
## [161] fansi_1.0.3                   parallelly_1.32.1            
## [163] R6_2.5.1                      grid_4.2.1                   
## [165] ggridges_0.5.4                lifecycle_1.0.3              
## [167] curl_4.3.3                    leiden_0.4.3                 
## [169] meshr_2.4.0                   jquerylib_0.1.4              
## [171] Matrix_1.5-1                  qvalue_2.30.0                
## [173] RcppAnnoy_0.0.20              RColorBrewer_1.1-3           
## [175] iterators_1.0.14              stringr_1.4.1                
## [177] htmlwidgets_1.5.4             polyclip_1.10-4              
## [179] biomaRt_2.54.0                purrr_0.3.5                  
## [181] shadowtext_0.1.2              gridGraphics_0.5-1           
## [183] reactome.db_1.82.0            mgcv_1.8-41                  
## [185] globals_0.16.1                patchwork_1.1.2              
## [187] spatstat.random_3.0-0         progressr_0.11.0             
## [189] codetools_0.2-18              prettyunits_1.1.1            
## [191] gtable_0.3.1                  DBI_1.1.3                    
## [193] ggfun_0.0.7                   tensor_1.5                   
## [195] httr_1.4.4                    highr_0.9                    
## [197] KernSmooth_2.23-20            stringi_1.7.8                
## [199] progress_1.2.2                msigdbr_7.5.1                
## [201] reshape2_1.4.4                farver_2.1.1                 
## [203] heatmaply_1.4.0               annotate_1.76.0              
## [205] viridis_0.6.2                 hexbin_1.28.2                
## [207] fdrtool_1.2.17                Rgraphviz_2.42.0             
## [209] magick_2.7.3                  ggtree_3.6.0                 
## [211] xml2_1.3.3                    restfulr_0.0.15              
## [213] ggplotify_0.1.0               Category_2.64.0              
## [215] scattermore_0.8               BiocVersion_3.16.0           
## [217] bit_4.0.4                     scatterpie_0.1.8             
## [219] spatstat.data_3.0-0           ggraph_2.1.0                 
## [221] babelgene_22.9                pkgconfig_2.0.3              
## [223] knitr_1.40