cellCellSimulate
functionscTensor 2.8.0
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.12.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.16.0
## [5] GO.db_3.16.0
## [6] OrganismDbi_1.40.0
## [7] GenomicFeatures_1.50.0
## [8] AnnotationDbi_1.60.0
## [9] SingleCellExperiment_1.20.0
## [10] SummarizedExperiment_1.28.0
## [11] Biobase_2.58.0
## [12] GenomicRanges_1.50.0
## [13] GenomeInfoDb_1.34.0
## [14] IRanges_2.32.0
## [15] S4Vectors_0.36.0
## [16] MatrixGenerics_1.10.0
## [17] matrixStats_0.62.0
## [18] scTensor_2.8.0
## [19] RSQLite_2.2.18
## [20] LRBaseDbi_2.8.0
## [21] AnnotationHub_3.6.0
## [22] BiocFileCache_2.6.0
## [23] dbplyr_2.2.1
## [24] BiocGenerics_0.44.0
## [25] BiocStyle_2.26.0
##
## loaded via a namespace (and not attached):
## [1] ica_1.0-3 Rsamtools_2.14.0
## [3] foreach_1.5.2 lmtest_0.9-40
## [5] crayon_1.5.2 spatstat.core_2.4-4
## [7] MASS_7.3-58.1 nlme_3.1-160
## [9] backports_1.4.1 GOSemSim_2.24.0
## [11] MeSHDbi_1.34.0 rlang_1.0.6
## [13] XVector_0.38.0 HDO.db_0.99.1
## [15] ROCR_1.0-11 irlba_2.3.5.1
## [17] nnTensor_1.1.8 ca_0.71.1
## [19] filelock_1.0.2 GOstats_2.64.0
## [21] rjson_0.2.21 BiocParallel_1.32.0
## [23] tagcloud_0.6 bit64_4.0.5
## [25] glue_1.6.2 sctransform_0.3.5
## [27] parallel_4.2.1 spatstat.sparse_3.0-0
## [29] dotCall64_1.0-2 tcltk_4.2.1
## [31] DOSE_3.24.0 spatstat.geom_3.0-3
## [33] tidyselect_1.2.0 SeuratObject_4.1.2
## [35] fitdistrplus_1.1-8 XML_3.99-0.12
## [37] tidyr_1.2.1 zoo_1.8-11
## [39] GenomicAlignments_1.34.0 xtable_1.8-4
## [41] magrittr_2.0.3 evaluate_0.17
## [43] ggplot2_3.3.6 cli_3.4.1
## [45] zlibbioc_1.44.0 miniUI_0.1.1.1
## [47] sp_1.5-0 bslib_0.4.0
## [49] rpart_4.1.19 fastmatch_1.1-3
## [51] treeio_1.22.0 maps_3.4.1
## [53] fields_14.1 shiny_1.7.3
## [55] xfun_0.34 gson_0.0.9
## [57] cluster_2.1.4 tidygraph_1.2.2
## [59] TSP_1.2-1 KEGGREST_1.38.0
## [61] tibble_3.1.8 interactiveDisplayBase_1.36.0
## [63] ggrepel_0.9.1 ape_5.6-2
## [65] listenv_0.8.0 dendextend_1.16.0
## [67] Biostrings_2.66.0 png_0.1-7
## [69] future_1.28.0 withr_2.5.0
## [71] bitops_1.0-7 ggforce_0.4.1
## [73] RBGL_1.74.0 plyr_1.8.7
## [75] GSEABase_1.60.0 pillar_1.8.1
## [77] cachem_1.0.6 graphite_1.44.0
## [79] vctrs_0.5.0 ellipsis_0.3.2
## [81] generics_0.1.3 plot3D_1.4
## [83] outliers_0.15 tools_4.2.1
## [85] entropy_1.3.1 munsell_0.5.0
## [87] tweenr_2.0.2 fgsea_1.24.0
## [89] DelayedArray_0.24.0 rtracklayer_1.58.0
## [91] fastmap_1.1.0 compiler_4.2.1
## [93] abind_1.4-5 httpuv_1.6.6
## [95] plotly_4.10.0 rgeos_0.5-9
## [97] GenomeInfoDbData_1.2.9 gridExtra_2.3
## [99] lattice_0.20-45 deldir_1.0-6
## [101] visNetwork_2.1.2 AnnotationForge_1.40.0
## [103] utf8_1.2.2 later_1.3.0
## [105] dplyr_1.0.10 jsonlite_1.8.3
## [107] ccTensor_1.0.2 concaveman_1.1.0
## [109] scales_1.2.1 graph_1.76.0
## [111] tidytree_0.4.1 pbapply_1.5-0
## [113] genefilter_1.80.0 lazyeval_0.2.2
## [115] promises_1.2.0.1 goftest_1.2-3
## [117] spatstat.utils_3.0-1 reticulate_1.26
## [119] checkmate_2.1.0 rmarkdown_2.17
## [121] cowplot_1.1.1 schex_1.12.0
## [123] webshot_0.5.4 Rtsne_0.16
## [125] uwot_0.1.14 igraph_1.3.5
## [127] survival_3.4-0 yaml_2.3.6
## [129] plotrix_3.8-2 htmltools_0.5.3
## [131] memoise_2.0.1 rTensor_1.4.8
## [133] BiocIO_1.8.0 Seurat_4.2.0
## [135] seriation_1.4.0 graphlayouts_0.8.3
## [137] viridisLite_0.4.1 digest_0.6.30
## [139] assertthat_0.2.1 ReactomePA_1.42.0
## [141] mime_0.12 rappdirs_0.3.3
## [143] registry_0.5-1 spam_2.9-1
## [145] yulab.utils_0.0.5 future.apply_1.9.1
## [147] misc3d_0.9-1 data.table_1.14.4
## [149] blob_1.2.3 splines_4.2.1
## [151] RCurl_1.98-1.9 hms_1.1.2
## [153] colorspace_2.0-3 BiocManager_1.30.19
## [155] aplot_0.1.8 sass_0.4.2
## [157] Rcpp_1.0.9 bookdown_0.29
## [159] RANN_2.6.1 enrichplot_1.18.0
## [161] fansi_1.0.3 parallelly_1.32.1
## [163] R6_2.5.1 grid_4.2.1
## [165] ggridges_0.5.4 lifecycle_1.0.3
## [167] curl_4.3.3 leiden_0.4.3
## [169] meshr_2.4.0 jquerylib_0.1.4
## [171] Matrix_1.5-1 qvalue_2.30.0
## [173] RcppAnnoy_0.0.20 RColorBrewer_1.1-3
## [175] iterators_1.0.14 stringr_1.4.1
## [177] htmlwidgets_1.5.4 polyclip_1.10-4
## [179] biomaRt_2.54.0 purrr_0.3.5
## [181] shadowtext_0.1.2 gridGraphics_0.5-1
## [183] reactome.db_1.82.0 mgcv_1.8-41
## [185] globals_0.16.1 patchwork_1.1.2
## [187] spatstat.random_3.0-0 progressr_0.11.0
## [189] codetools_0.2-18 prettyunits_1.1.1
## [191] gtable_0.3.1 DBI_1.1.3
## [193] ggfun_0.0.7 tensor_1.5
## [195] httr_1.4.4 highr_0.9
## [197] KernSmooth_2.23-20 stringi_1.7.8
## [199] progress_1.2.2 msigdbr_7.5.1
## [201] reshape2_1.4.4 farver_2.1.1
## [203] heatmaply_1.4.0 annotate_1.76.0
## [205] viridis_0.6.2 hexbin_1.28.2
## [207] fdrtool_1.2.17 Rgraphviz_2.42.0
## [209] magick_2.7.3 ggtree_3.6.0
## [211] xml2_1.3.3 restfulr_0.0.15
## [213] ggplotify_0.1.0 Category_2.64.0
## [215] scattermore_0.8 BiocVersion_3.16.0
## [217] bit_4.0.4 scatterpie_0.1.8
## [219] spatstat.data_3.0-0 ggraph_2.1.0
## [221] babelgene_22.9 pkgconfig_2.0.3
## [223] knitr_1.40