# To install scGPS from github (Depending on the configuration of the local
# computer or HPC, possible custom C++ compilation may be required - see
# installation trouble-shootings below)
devtools::install_github("IMB-Computational-Genomics-Lab/scGPS")
# for C++ compilation trouble-shooting, manual download and installation can be
# done from github
git clone https://github.com/IMB-Computational-Genomics-Lab/scGPS
# then check in scGPS/src if any of the precompiled (e.g. those with *.so and
# *.o) files exist and delete them before recompiling
# then with the scGPS as the R working directory, manually install and load
# using devtools functionality
# Install the package
devtools::install()
#load the package to the workspace
library(scGPS)
The purpose of this workflow is to solve the following task:
# load mixed population 1 (loaded from day_2_cardio_cell_sample dataset,
# named it as day2)
library(scGPS)
day2 <- day_2_cardio_cell_sample
mixedpop1 <- new_scGPS_object(ExpressionMatrix = day2$dat2_counts,
GeneMetadata = day2$dat2geneInfo, CellMetadata = day2$dat2_clusters)
# load mixed population 2 (loaded from day_5_cardio_cell_sample dataset,
# named it as day5)
day5 <- day_5_cardio_cell_sample
mixedpop2 <- new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = day5$dat5_clusters)
# select a subpopulation
c_selectID <- 1
# load gene list (this can be any lists of user selected genes)
genes <- training_gene_sample
genes <- genes$Merged_unique
# load cluster information
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#run training (running nboots = 3 here, but recommend to use nboots = 50-100)
LSOLDA_dat <- bootstrap_prediction(nboots = 3, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes = genes, c_selectID = c_selectID,
listData = list(), cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2, trainset_ratio = 0.7)
names(LSOLDA_dat)
#> [1] "Accuracy" "ElasticNetGenes" "Deviance"
#> [4] "ElasticNetFit" "LDAFit" "predictor_S1"
#> [7] "ElasticNetPredict" "LDAPredict" "cell_results"
# summary results LDA
sum_pred_lda <- summary_prediction_lda(LSOLDA_dat = LSOLDA_dat, nPredSubpop = 4)
# summary results Lasso to show the percent of cells
# classified as cells belonging
sum_pred_lasso <- summary_prediction_lasso(LSOLDA_dat = LSOLDA_dat,
nPredSubpop = 4)
# plot summary results
plot_sum <-function(sum_dat){
sum_dat_tf <- t(sum_dat)
sum_dat_tf <- na.omit(sum_dat_tf)
sum_dat_tf <- apply(sum_dat[, -ncol(sum_dat)],1,
function(x){as.numeric(as.vector(x))})
sum_dat$names <- gsub("ElasticNet for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
sum_dat$names <- gsub("LDA for subpop","sp", sum_dat$names )
sum_dat$names <- gsub("in target mixedpop","in p", sum_dat$names)
colnames(sum_dat_tf) <- sum_dat$names
boxplot(sum_dat_tf, las=2)
}
plot_sum(sum_pred_lasso)
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 68.37209 62.50000 65.25822
# summary maximum deviance explained by the model
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "8.21" "7.9" "6.56"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 8.21 genes_cluster1
#> 2 1 8.21 genes_cluster1
#> 3 2 8.21 genes_cluster1
#> 4 3 8.21 genes_cluster1
#> 5 4 8.21 genes_cluster1
#> 6 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
The purpose of this workflow is to solve the following task:
(skip this step if clusters are known)
# find clustering information in an expresion data using CORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames)
CORE_cluster <- CORE_clustering(mixedpop2, remove_outlier = c(0), PCA=FALSE)
# to update the clustering information, users can ...
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
clustering_after_outlier_removal <- unname(unlist(
CORE_cluster$Cluster[[optimal_index]]))
corresponding_cells_after_outlier_removal <- CORE_cluster$cellsForClustering
original_cells_before_removal <- colData(mixedpop2)[,2]
corresponding_index <- match(corresponding_cells_after_outlier_removal,
original_cells_before_removal )
# check the matching
identical(as.character(original_cells_before_removal[corresponding_index]),
corresponding_cells_after_outlier_removal)
#> [1] TRUE
# create new object with the new clustering after removing outliers
mixedpop2_post_clustering <- mixedpop2[,corresponding_index]
colData(mixedpop2_post_clustering)[,1] <- clustering_after_outlier_removal
(skip this step if clusters are known)
(SCORE aims to get stable subpopulation results by introducing bagging aggregation and bootstrapping to the CORE algorithm)
# find clustering information in an expresion data using SCORE
day5 <- day_5_cardio_cell_sample
cellnames <- colnames(day5$dat5_counts)
cluster <-day5$dat5_clusters
cellnames <-data.frame("Cluster"=cluster, "cellBarcodes" = cellnames)
mixedpop2 <-new_scGPS_object(ExpressionMatrix = day5$dat5_counts,
GeneMetadata = day5$dat5geneInfo, CellMetadata = cellnames )
SCORE_test <- CORE_bagging(mixedpop2, remove_outlier = c(0), PCA=FALSE,
bagging_run = 20, subsample_proportion = .8)
dev.off()
#> null device
#> 1
##3.2.1 plot CORE clustering
p1 <- plot_CORE(CORE_cluster$tree, CORE_cluster$Cluster,
color_branch = c("#208eb7", "#6ce9d3", "#1c5e39", "#8fca40", "#154975",
"#b1c8eb"))
p1
#> $mar
#> [1] 1 5 0 1
#extract optimal index identified by CORE
key_height <- CORE_cluster$optimalClust$KeyStats$Height
optimal_res <- CORE_cluster$optimalClust$OptimalRes
optimal_index = which(key_height == optimal_res)
#plot one optimal clustering bar
plot_optimal_CORE(original_tree= CORE_cluster$tree,
optimal_cluster = unlist(CORE_cluster$Cluster[optimal_index]),
shift = -2000)
#> Ordering and assigning labels...
#> 2
#> 162335NA
#> 3
#> 162335423
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
##3.2.2 plot SCORE clustering
#plot all clustering bars
plot_CORE(SCORE_test$tree, list_clusters = SCORE_test$Cluster)
#plot one stable optimal clustering bar
plot_optimal_CORE(original_tree= SCORE_test$tree,
optimal_cluster = unlist(SCORE_test$Cluster[
SCORE_test$optimal_index]),
shift = -100)
#> Ordering and assigning labels...
#> 2
#> 24112NANANANANANA
#> 3
#> 24112224NANANANANA
#> 4
#> 24112224299NANANANA
#> 5
#> 24112224299335NANANA
#> 6
#> 24112224299335367NANA
#> 7
#> 24112224299335367414NA
#> 8
#> 24112224299335367414470
#> Plotting the colored dendrogram now....
#> Plotting the bar underneath now....
t <- tSNE(expression.mat=assay(mixedpop2))
#> Preparing PCA inputs using the top 1500 genes ...
#> Computing PCA values...
#> Running tSNE ...
p2 <-plot_reduced(t, color_fac = factor(colData(mixedpop2)[,1]),
palletes =1:length(unique(colData(mixedpop2)[,1])))
#> Warning: The dot-dot notation (`..count..`) was deprecated in ggplot2 3.4.0.
#> ℹ Please use `after_stat(count)` instead.
#> ℹ The deprecated feature was likely used in the cowplot package.
#> Please report the issue at <https://github.com/wilkelab/cowplot/issues>.
#> Warning: Use of `reduced_dat_toPlot$Dim1` is discouraged.
#> ℹ Use `Dim1` instead.
#> Warning: Use of `reduced_dat_toPlot$Dim2` is discouraged.
#> ℹ Use `Dim2` instead.
p2
#load gene list (this can be any lists of user-selected genes)
genes <-training_gene_sample
genes <-genes$Merged_unique
#the gene list can also be objectively identified by differential expression
#analysis cluster information is requied for find_markers. Here, we use
#CORE results.
#colData(mixedpop2)[,1] <- unlist(SCORE_test$Cluster[SCORE_test$optimal_index])
suppressMessages(library(locfit))
DEgenes <- find_markers(expression_matrix=assay(mixedpop2),
cluster = colData(mixedpop2)[,1],
selected_cluster=unique(colData(mixedpop2)[,1]))
#the output contains dataframes for each cluster.
#the data frame contains all genes, sorted by p-values
names(DEgenes)
#> [1] "baseMean" "log2FoldChange" "lfcSE" "stat"
#> [5] "pvalue" "padj" "id"
#you can annotate the identified clusters
DEgeneList_1vsOthers <- DEgenes$DE_Subpop1vsRemaining$id
#users need to check the format of the gene input to make sure they are
#consistent to the gene names in the expression matrix
#the following command saves the file "PathwayEnrichment.xlsx" to the
#working dir
#use 500 top DE genes
suppressMessages(library(DOSE))
suppressMessages(library(ReactomePA))
suppressMessages(library(clusterProfiler))
genes500 <- as.factor(DEgeneList_1vsOthers[seq_len(500)])
enrichment_test <- annotate_clusters(genes, pvalueCutoff=0.05, gene_symbol=TRUE)
#the enrichment outputs can be displayed by running
clusterProfiler::dotplot(enrichment_test, showCategory=10, font.size = 6)
The purpose of this workflow is to solve the following task:
#select a subpopulation, and input gene list
c_selectID <- 1
#note make sure the format for genes input here is the same to the format
#for genes in the mixedpop1 and mixedpop2
genes = DEgenes$id[1:500]
#run the test bootstrap with nboots = 2 runs
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
LSOLDA_dat <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes = genes,
c_selectID = c_selectID,
listData = list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#get the number of rows for the summary matrix
row_cluster <-length(unique(colData(mixedpop2)[,1]))
#summary results LDA to to show the percent of cells classified as cells
#belonging by LDA classifier
summary_prediction_lda(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster )
#> V1 V2 names
#> 1 2.67379679144385 68.4491978609626 LDA for subpop 1 in target mixedpop2
#> 2 20 58.5714285714286 LDA for subpop 2 in target mixedpop2
#> 3 3.00751879699248 64.6616541353383 LDA for subpop 3 in target mixedpop2
#> 4 7.5 75 LDA for subpop 4 in target mixedpop2
#summary results Lasso to show the percent of cells classified as cells
#belonging by Lasso classifier
summary_prediction_lasso(LSOLDA_dat=LSOLDA_dat, nPredSubpop = row_cluster)
#> V1 V2 names
#> 1 55.0802139037433 46.524064171123 ElasticNet for subpop1 in target mixedpop2
#> 2 79.2857142857143 96.4285714285714 ElasticNet for subpop2 in target mixedpop2
#> 3 41.3533834586466 34.5864661654135 ElasticNet for subpop3 in target mixedpop2
#> 4 55 65 ElasticNet for subpop4 in target mixedpop2
# summary maximum deviance explained by the model during the model training
summary_deviance(object = LSOLDA_dat)
#> $allDeviance
#> [1] "98.23" "61.41"
#>
#> $DeviMax
#> dat_DE$Dfd Deviance DEgenes
#> 1 0 98.23 genes_cluster1
#> 2 1 98.23 genes_cluster1
#> 3 2 98.23 genes_cluster1
#> 4 5 98.23 genes_cluster1
#> 5 7 98.23 genes_cluster1
#> 6 11 98.23 genes_cluster1
#> 7 12 98.23 genes_cluster1
#> 8 13 98.23 genes_cluster1
#> 9 16 98.23 genes_cluster1
#> 10 17 98.23 genes_cluster1
#> 11 19 98.23 genes_cluster1
#> 12 20 98.23 genes_cluster1
#> 13 21 98.23 genes_cluster1
#> 14 24 98.23 genes_cluster1
#> 15 27 98.23 genes_cluster1
#> 16 30 98.23 genes_cluster1
#> 17 33 98.23 genes_cluster1
#> 18 34 98.23 genes_cluster1
#> 19 36 98.23 genes_cluster1
#> 20 42 98.23 genes_cluster1
#> 21 44 98.23 genes_cluster1
#> 22 46 98.23 genes_cluster1
#> 23 48 98.23 genes_cluster1
#> 24 50 98.23 genes_cluster1
#> 25 54 98.23 genes_cluster1
#> 26 56 98.23 genes_cluster1
#> 27 57 98.23 genes_cluster1
#> 28 58 98.23 genes_cluster1
#> 29 61 98.23 genes_cluster1
#> 30 63 98.23 genes_cluster1
#> 31 64 98.23 genes_cluster1
#> 32 66 98.23 genes_cluster1
#> 33 67 98.23 genes_cluster1
#> 34 68 98.23 genes_cluster1
#> 35 69 98.23 genes_cluster1
#> 36 71 98.23 genes_cluster1
#> 37 72 98.23 genes_cluster1
#> 38 73 98.23 genes_cluster1
#> 39 76 98.23 genes_cluster1
#> 40 77 98.23 genes_cluster1
#> 41 79 98.23 genes_cluster1
#> 42 80 98.23 genes_cluster1
#> 43 82 98.23 genes_cluster1
#> 44 83 98.23 genes_cluster1
#> 45 84 98.23 genes_cluster1
#> 46 85 98.23 genes_cluster1
#> 47 remaining DEgenes remaining DEgenes remaining DEgenes
#>
#> $LassoGenesMax
#> NULL
# summary accuracy to check the model accuracy in the leave-out test set
summary_accuracy(object = LSOLDA_dat)
#> [1] 65.62500 66.07143
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
#cluster_mixedpop2 <- as.numeric(as.vector(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 4
genes = DEgenes$id[1:200]
LSOLDA_dat4 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop2,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop2,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S2 <- reformat_LASSO(c_selectID=1, mp_selectID = 2,
LSOLDA_dat=LSOLDA_dat1,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#7570b3")
LASSO_C2S2 <- reformat_LASSO(c_selectID=2, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat2,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#1b9e77")
LASSO_C3S2 <- reformat_LASSO(c_selectID=3, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat3,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#e7298a")
LASSO_C4S2 <- reformat_LASSO(c_selectID=4, mp_selectID =2,
LSOLDA_dat=LSOLDA_dat4,
nPredSubpop = length(unique(colData(mixedpop2)
[,1])),
Nodes_group ="#00FFFF")
combined <- rbind(LASSO_C1S2,LASSO_C2S2,LASSO_C3S2, LASSO_C4S2 )
combined <- combined[is.na(combined$Value) != TRUE,]
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
Source[Source==Node_all[i]] <-i-1
Target[Target==Node_all[i]] <-i-1
}
#
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
Color <- combined %>% count(Node, color=NodeGroup) %>% select(2)
node_df$color <- Color$color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
Here we look at one example use case to find relationship between clusters within one sample or between two sample
#run prediction for 3 clusters
cluster_mixedpop1 <- colData(mixedpop1)[,1]
cluster_mixedpop2 <- colData(mixedpop2)[,1]
row_cluster <-length(unique(colData(mixedpop2)[,1]))
c_selectID <- 1
#top 200 gene markers distinguishing cluster 1
genes = DEgenes$id[1:200]
LSOLDA_dat1 <- bootstrap_prediction(nboots = 2, mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 2
genes = DEgenes$id[1:200]
LSOLDA_dat2 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
c_selectID <- 3
genes = DEgenes$id[1:200]
LSOLDA_dat3 <- bootstrap_prediction(nboots = 2,mixedpop1 = mixedpop1,
mixedpop2 = mixedpop2, genes=genes, c_selectID,
listData =list(),
cluster_mixedpop1 = cluster_mixedpop1,
cluster_mixedpop2 = cluster_mixedpop2)
#prepare table input for sankey plot
LASSO_C1S1 <- reformat_LASSO(c_selectID=1, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat1, nPredSubpop = row_cluster,
Nodes_group = "#7570b3")
LASSO_C2S1 <- reformat_LASSO(c_selectID=2, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat2, nPredSubpop = row_cluster,
Nodes_group = "#1b9e77")
LASSO_C3S1 <- reformat_LASSO(c_selectID=3, mp_selectID = 1,
LSOLDA_dat=LSOLDA_dat3, nPredSubpop = row_cluster,
Nodes_group = "#e7298a")
combined <- rbind(LASSO_C1S1,LASSO_C2S1,LASSO_C3S1)
nboots = 2
#links: source, target, value
#source: node, nodegroup
combined_D3obj <-list(Nodes=combined[,(nboots+3):(nboots+4)],
Links=combined[,c((nboots+2):(nboots+1),ncol(combined))])
combined <- combined[is.na(combined$Value) != TRUE,]
library(networkD3)
Node_source <- as.vector(sort(unique(combined_D3obj$Links$Source)))
Node_target <- as.vector(sort(unique(combined_D3obj$Links$Target)))
Node_all <-unique(c(Node_source, Node_target))
#assign IDs for Source (start from 0)
Source <-combined_D3obj$Links$Source
Target <- combined_D3obj$Links$Target
for(i in 1:length(Node_all)){
Source[Source==Node_all[i]] <-i-1
Target[Target==Node_all[i]] <-i-1
}
combined_D3obj$Links$Source <- as.numeric(Source)
combined_D3obj$Links$Target <- as.numeric(Target)
combined_D3obj$Links$LinkColor <- combined$NodeGroup
#prepare node info
node_df <-data.frame(Node=Node_all)
node_df$id <-as.numeric(c(0, 1:(length(Node_all)-1)))
suppressMessages(library(dplyr))
n <- length(unique(node_df$Node))
getPalette = colorRampPalette(RColorBrewer::brewer.pal(9, "Set1"))
Color = getPalette(n)
node_df$color <- Color
suppressMessages(library(networkD3))
p1<-sankeyNetwork(Links =combined_D3obj$Links, Nodes = node_df,
Value = "Value", NodeGroup ="color", LinkGroup = "LinkColor",
NodeID="Node", Source="Source", Target="Target", fontSize = 22)
p1
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.2.2 (2022-10-31)
#> os Ubuntu 20.04.5 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2023-01-19
#> pandoc 2.5 @ /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> annotate 1.76.0 2023-01-19 [2] Bioconductor
#> AnnotationDbi * 1.60.0 2023-01-19 [2] Bioconductor
#> ape 5.6-2 2022-03-02 [2] CRAN (R 4.2.2)
#> aplot 0.1.9 2022-11-24 [2] CRAN (R 4.2.2)
#> assertthat 0.2.1 2019-03-21 [2] CRAN (R 4.2.2)
#> Biobase * 2.58.0 2023-01-19 [2] Bioconductor
#> BiocGenerics * 0.44.0 2023-01-19 [2] Bioconductor
#> BiocParallel 1.32.5 2023-01-19 [2] Bioconductor
#> Biostrings 2.66.0 2023-01-19 [2] Bioconductor
#> bit 4.0.5 2022-11-15 [2] CRAN (R 4.2.2)
#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.2.2)
#> bitops 1.0-7 2021-04-24 [2] CRAN (R 4.2.2)
#> blob 1.2.3 2022-04-10 [2] CRAN (R 4.2.2)
#> bslib 0.4.2 2022-12-16 [2] CRAN (R 4.2.2)
#> cachem 1.0.6 2021-08-19 [2] CRAN (R 4.2.2)
#> callr 3.7.3 2022-11-02 [2] CRAN (R 4.2.2)
#> caret * 6.0-93 2022-08-09 [2] CRAN (R 4.2.2)
#> class 7.3-20 2022-01-16 [2] CRAN (R 4.2.2)
#> cli 3.6.0 2023-01-09 [2] CRAN (R 4.2.2)
#> clusterProfiler * 4.6.0 2023-01-19 [2] Bioconductor
#> codetools 0.2-18 2020-11-04 [2] CRAN (R 4.2.2)
#> colorspace 2.0-3 2022-02-21 [2] CRAN (R 4.2.2)
#> cowplot 1.1.1 2020-12-30 [2] CRAN (R 4.2.2)
#> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.2.2)
#> data.table 1.14.6 2022-11-16 [2] CRAN (R 4.2.2)
#> DBI 1.1.3 2022-06-18 [2] CRAN (R 4.2.2)
#> DelayedArray 0.24.0 2023-01-19 [2] Bioconductor
#> dendextend 1.16.0 2022-07-04 [2] CRAN (R 4.2.2)
#> DESeq2 1.38.3 2023-01-19 [2] Bioconductor
#> devtools 2.4.5 2022-10-11 [2] CRAN (R 4.2.2)
#> digest 0.6.31 2022-12-11 [2] CRAN (R 4.2.2)
#> DOSE * 3.24.2 2023-01-19 [2] Bioconductor
#> downloader 0.4 2015-07-09 [2] CRAN (R 4.2.2)
#> dplyr * 1.0.10 2022-09-01 [2] CRAN (R 4.2.2)
#> dynamicTreeCut * 1.63-1 2016-03-11 [2] CRAN (R 4.2.2)
#> e1071 1.7-12 2022-10-24 [2] CRAN (R 4.2.2)
#> ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.2.2)
#> enrichplot 1.18.3 2023-01-19 [2] Bioconductor
#> evaluate 0.20 2023-01-17 [2] CRAN (R 4.2.2)
#> fansi 1.0.3 2022-03-24 [2] CRAN (R 4.2.2)
#> farver 2.1.1 2022-07-06 [2] CRAN (R 4.2.2)
#> fastcluster 1.2.3 2021-05-24 [2] CRAN (R 4.2.2)
#> fastmap 1.1.0 2021-01-25 [2] CRAN (R 4.2.2)
#> fastmatch 1.1-3 2021-07-23 [2] CRAN (R 4.2.2)
#> fgsea 1.24.0 2023-01-19 [2] Bioconductor
#> foreach 1.5.2 2022-02-02 [2] CRAN (R 4.2.2)
#> fs 1.5.2 2021-12-08 [2] CRAN (R 4.2.2)
#> future 1.30.0 2022-12-16 [2] CRAN (R 4.2.2)
#> future.apply 1.10.0 2022-11-05 [2] CRAN (R 4.2.2)
#> geneplotter 1.76.0 2023-01-19 [2] Bioconductor
#> generics 0.1.3 2022-07-05 [2] CRAN (R 4.2.2)
#> GenomeInfoDb * 1.34.7 2023-01-19 [2] Bioconductor
#> GenomeInfoDbData 1.2.9 2022-11-08 [2] Bioconductor
#> GenomicRanges * 1.50.2 2023-01-19 [2] Bioconductor
#> ggforce 0.4.1 2022-10-04 [2] CRAN (R 4.2.2)
#> ggfun 0.0.9 2022-11-21 [2] CRAN (R 4.2.2)
#> ggplot2 * 3.4.0 2022-11-04 [2] CRAN (R 4.2.2)
#> ggplotify 0.1.0 2021-09-02 [2] CRAN (R 4.2.2)
#> ggraph 2.1.0 2022-10-09 [2] CRAN (R 4.2.2)
#> ggrepel 0.9.2 2022-11-06 [2] CRAN (R 4.2.2)
#> ggtree 3.6.2 2023-01-19 [2] Bioconductor
#> glmnet 4.1-6 2022-11-27 [2] CRAN (R 4.2.2)
#> globals 0.16.2 2022-11-21 [2] CRAN (R 4.2.2)
#> glue 1.6.2 2022-02-24 [2] CRAN (R 4.2.2)
#> GO.db 3.16.0 2022-11-08 [2] Bioconductor
#> GOSemSim 2.24.0 2023-01-19 [2] Bioconductor
#> gower 1.0.1 2022-12-22 [2] CRAN (R 4.2.2)
#> graph 1.76.0 2023-01-19 [2] Bioconductor
#> graphite 1.44.0 2023-01-19 [2] Bioconductor
#> graphlayouts 0.8.4 2022-11-24 [2] CRAN (R 4.2.2)
#> gridExtra 2.3 2017-09-09 [2] CRAN (R 4.2.2)
#> gridGraphics 0.5-1 2020-12-13 [2] CRAN (R 4.2.2)
#> gson 0.0.9 2022-09-06 [2] CRAN (R 4.2.2)
#> gtable 0.3.1 2022-09-01 [2] CRAN (R 4.2.2)
#> hardhat 1.2.0 2022-06-30 [2] CRAN (R 4.2.2)
#> HDO.db 0.99.1 2022-11-08 [2] Bioconductor
#> highr 0.10 2022-12-22 [2] CRAN (R 4.2.2)
#> htmltools 0.5.4 2022-12-07 [2] CRAN (R 4.2.2)
#> htmlwidgets 1.6.1 2023-01-07 [2] CRAN (R 4.2.2)
#> httpuv 1.6.8 2023-01-12 [2] CRAN (R 4.2.2)
#> httr 1.4.4 2022-08-17 [2] CRAN (R 4.2.2)
#> igraph 1.3.5 2022-09-22 [2] CRAN (R 4.2.2)
#> ipred 0.9-13 2022-06-02 [2] CRAN (R 4.2.2)
#> IRanges * 2.32.0 2023-01-19 [2] Bioconductor
#> iterators 1.0.14 2022-02-05 [2] CRAN (R 4.2.2)
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.2.2)
#> jsonlite 1.8.4 2022-12-06 [2] CRAN (R 4.2.2)
#> KEGGREST 1.38.0 2023-01-19 [2] Bioconductor
#> knitr 1.41 2022-11-18 [2] CRAN (R 4.2.2)
#> labeling 0.4.2 2020-10-20 [2] CRAN (R 4.2.2)
#> later 1.3.0 2021-08-18 [2] CRAN (R 4.2.2)
#> lattice * 0.20-45 2021-09-22 [2] CRAN (R 4.2.2)
#> lava 1.7.1 2023-01-06 [2] CRAN (R 4.2.2)
#> lazyeval 0.2.2 2019-03-15 [2] CRAN (R 4.2.2)
#> lifecycle 1.0.3 2022-10-07 [2] CRAN (R 4.2.2)
#> listenv 0.9.0 2022-12-16 [2] CRAN (R 4.2.2)
#> locfit * 1.5-9.7 2023-01-02 [2] CRAN (R 4.2.2)
#> lubridate 1.9.0 2022-11-06 [2] CRAN (R 4.2.2)
#> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.2.2)
#> MASS 7.3-58.1 2022-08-03 [2] CRAN (R 4.2.2)
#> Matrix 1.5-3 2022-11-11 [2] CRAN (R 4.2.2)
#> MatrixGenerics * 1.10.0 2023-01-19 [2] Bioconductor
#> matrixStats * 0.63.0 2022-11-18 [2] CRAN (R 4.2.2)
#> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.2.2)
#> mime 0.12 2021-09-28 [2] CRAN (R 4.2.2)
#> miniUI 0.1.1.1 2018-05-18 [2] CRAN (R 4.2.2)
#> ModelMetrics 1.2.2.2 2020-03-17 [2] CRAN (R 4.2.2)
#> munsell 0.5.0 2018-06-12 [2] CRAN (R 4.2.2)
#> networkD3 * 0.4 2017-03-18 [2] CRAN (R 4.2.2)
#> nlme 3.1-161 2022-12-15 [2] CRAN (R 4.2.2)
#> nnet 7.3-18 2022-09-28 [2] CRAN (R 4.2.2)
#> org.Hs.eg.db * 3.16.0 2022-11-08 [2] Bioconductor
#> parallelly 1.34.0 2023-01-13 [2] CRAN (R 4.2.2)
#> patchwork 1.1.2 2022-08-19 [2] CRAN (R 4.2.2)
#> pillar 1.8.1 2022-08-19 [2] CRAN (R 4.2.2)
#> pkgbuild 1.4.0 2022-11-27 [2] CRAN (R 4.2.2)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.2.2)
#> pkgload 1.3.2 2022-11-16 [2] CRAN (R 4.2.2)
#> plyr 1.8.8 2022-11-11 [2] CRAN (R 4.2.2)
#> png 0.1-8 2022-11-29 [2] CRAN (R 4.2.2)
#> polyclip 1.10-4 2022-10-20 [2] CRAN (R 4.2.2)
#> prettyunits 1.1.1 2020-01-24 [2] CRAN (R 4.2.2)
#> pROC 1.18.0 2021-09-03 [2] CRAN (R 4.2.2)
#> processx 3.8.0 2022-10-26 [2] CRAN (R 4.2.2)
#> prodlim 2019.11.13 2019-11-17 [2] CRAN (R 4.2.2)
#> profvis 0.3.7 2020-11-02 [2] CRAN (R 4.2.2)
#> promises 1.2.0.1 2021-02-11 [2] CRAN (R 4.2.2)
#> proxy 0.4-27 2022-06-09 [2] CRAN (R 4.2.2)
#> ps 1.7.2 2022-10-26 [2] CRAN (R 4.2.2)
#> purrr 1.0.1 2023-01-10 [2] CRAN (R 4.2.2)
#> qvalue 2.30.0 2023-01-19 [2] Bioconductor
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.2.2)
#> rappdirs 0.3.3 2021-01-31 [2] CRAN (R 4.2.2)
#> RColorBrewer 1.1-3 2022-04-03 [2] CRAN (R 4.2.2)
#> Rcpp 1.0.9 2022-07-08 [2] CRAN (R 4.2.2)
#> RcppArmadillo 0.11.4.3.1 2023-01-15 [2] CRAN (R 4.2.2)
#> RcppParallel 5.1.6 2023-01-09 [2] CRAN (R 4.2.2)
#> RCurl 1.98-1.9 2022-10-03 [2] CRAN (R 4.2.2)
#> reactome.db 1.82.0 2022-11-08 [2] Bioconductor
#> ReactomePA * 1.42.0 2023-01-19 [2] Bioconductor
#> recipes 1.0.4 2023-01-11 [2] CRAN (R 4.2.2)
#> remotes 2.4.2 2021-11-30 [2] CRAN (R 4.2.2)
#> reshape2 1.4.4 2020-04-09 [2] CRAN (R 4.2.2)
#> rlang 1.0.6 2022-09-24 [2] CRAN (R 4.2.2)
#> rmarkdown 2.19 2022-12-15 [2] CRAN (R 4.2.2)
#> rpart 4.1.19 2022-10-21 [2] CRAN (R 4.2.2)
#> RSQLite 2.2.20 2022-12-22 [2] CRAN (R 4.2.2)
#> Rtsne 0.16 2022-04-17 [2] CRAN (R 4.2.2)
#> S4Vectors * 0.36.1 2023-01-19 [2] Bioconductor
#> sass 0.4.4 2022-11-24 [2] CRAN (R 4.2.2)
#> scales 1.2.1 2022-08-20 [2] CRAN (R 4.2.2)
#> scatterpie 0.1.8 2022-09-03 [2] CRAN (R 4.2.2)
#> scGPS * 1.12.2 2023-01-19 [1] Bioconductor
#> sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.2.2)
#> shadowtext 0.1.2 2022-04-22 [2] CRAN (R 4.2.2)
#> shape 1.4.6 2021-05-19 [2] CRAN (R 4.2.2)
#> shiny 1.7.4 2022-12-15 [2] CRAN (R 4.2.2)
#> SingleCellExperiment * 1.20.0 2023-01-19 [2] Bioconductor
#> stringi 1.7.12 2023-01-11 [2] CRAN (R 4.2.2)
#> stringr 1.5.0 2022-12-02 [2] CRAN (R 4.2.2)
#> SummarizedExperiment * 1.28.0 2023-01-19 [2] Bioconductor
#> survival 3.5-0 2023-01-09 [2] CRAN (R 4.2.2)
#> tibble 3.1.8 2022-07-22 [2] CRAN (R 4.2.2)
#> tidygraph 1.2.2 2022-08-22 [2] CRAN (R 4.2.2)
#> tidyr 1.2.1 2022-09-08 [2] CRAN (R 4.2.2)
#> tidyselect 1.2.0 2022-10-10 [2] CRAN (R 4.2.2)
#> tidytree 0.4.2 2022-12-18 [2] CRAN (R 4.2.2)
#> timechange 0.2.0 2023-01-11 [2] CRAN (R 4.2.2)
#> timeDate 4022.108 2023-01-07 [2] CRAN (R 4.2.2)
#> treeio 1.22.0 2023-01-19 [2] Bioconductor
#> tweenr 2.0.2 2022-09-06 [2] CRAN (R 4.2.2)
#> urlchecker 1.0.1 2021-11-30 [2] CRAN (R 4.2.2)
#> usethis 2.1.6 2022-05-25 [2] CRAN (R 4.2.2)
#> utf8 1.2.2 2021-07-24 [2] CRAN (R 4.2.2)
#> vctrs 0.5.1 2022-11-16 [2] CRAN (R 4.2.2)
#> viridis 0.6.2 2021-10-13 [2] CRAN (R 4.2.2)
#> viridisLite 0.4.1 2022-08-22 [2] CRAN (R 4.2.2)
#> withr 2.5.0 2022-03-03 [2] CRAN (R 4.2.2)
#> xfun 0.36 2022-12-21 [2] CRAN (R 4.2.2)
#> XML 3.99-0.13 2022-12-04 [2] CRAN (R 4.2.2)
#> xtable 1.8-4 2019-04-21 [2] CRAN (R 4.2.2)
#> XVector 0.38.0 2023-01-19 [2] Bioconductor
#> yaml 2.3.6 2022-10-18 [2] CRAN (R 4.2.2)
#> yulab.utils 0.0.6 2022-12-20 [2] CRAN (R 4.2.2)
#> zlibbioc 1.44.0 2023-01-19 [2] Bioconductor
#>
#> [1] /tmp/Rtmpfm8KkJ/Rinst26133f400b4ec3
#> [2] /home/biocbuild/bbs-3.16-bioc/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────