Contents

1 MSPC

The analysis of ChIP-seq samples outputs a number of enriched regions (commonly known as “peaks”), each indicating a protein-DNA interaction or a specific chromatin modification. When replicate samples are analyzed, overlapping peaks are expected. This repeated evidence can therefore be used to locally lower the minimum significance required to accept a peak. MSPC is a method for joint analysis of weak peaks. Given a set of peaks from (biological or technical) replicates, MSPC combines the p-values of overlapping enriched regions, and allows the “rescue” of weak peaks occurring in more than one replicate. In other words, MSPC comparatively evaluates ChIP-seq peaks and combines the statistical significance of repeated evidences, with the aim of lowering the minimum significance required to “rescue” weak peaks; hence reducing false-negatives.

2 Run MSPC from Command Line or as an R Package

The MSPC method is implemented as a C# .NET library with two interfaces: A cross-platform command line interface, and an R package. Both interfaces are built on the same library, hence they provide the same functionality and produce the same output.

The documentation for running the package from a terminal on Linux, macOS, and Windows is available at this page. The present package, rmspc, is developed to run MSPC from R. The package facilitates usage and integration of MSPC with pipelines/scripts written in R. This document explores how to use MSPC program from Rstudio, using the rmspc package.

3 Prerequisites

A prerequisite for the rmspc package is .NET 5.0 (since it is developed on program implemented in C# .NET). You can check if .NET is installed using the command dotnet --info run in a terminal. If .NET is installed, the output of the command shows the version of the installed framework (should be 5.0 or newer). If not installed, you may install following these instructions.

4 Using the rmspc package

4.1 Installing and loading the package

The installation of the package goes as follows :

if (!require("BiocManager"))
    install.packages("BiocManager")
BiocManager::install("rmspc")

If the package BiocManager is not installed in the user’s computer, it will be installed as well.

A package only needs to be installed once. We load the rmspc package into an R session :

library(rmspc)

The package has one external function: mspc. This is the main function of the package that we use to run the MSPC program in R.

4.2 Required arguments of the mspc function

There are 4 required arguments that the user needs to specify to run the mspc function.

These arguments are:

  • input: Character vector (file path of BED files) or a GRanges list.

  • replicateType: Character string. This argument defines the replicate type. Possible values : ‘Bio’, ‘Biological’, ‘Tec’, ‘Technical’.

  • stringencyThreshold: A real number of type Double. A threshold on p-values, where peaks with p-value lower than this threshold are considered stringent peaks.

  • weakThreshold: A real number of type Double. A threshold on p-values, such that peaks with p-value between this and the stringency threshold are considered weak peaks.

More information about the arguments of the mspc function can be found in the package documentation.

It is important to note that the input argument can be given in two possible formats.

4.3 Scenario 1: Input as path file to BED files

In this first scenario, we suppose the samples we want to use as input data for the mspc function are in a BED file format. We will use for this example the external data available in the package.

path <- system.file("extdata", package = "rmspc")

We have two sample files available in the directory inst/extdata of the package :

list.files(path)
## [1] "rep1.bed" "rep2.bed"

More information about these sample files is available in the data documentation file.

We specify the input argument. In this first scenario, the input argument is a character vector. Each element of the vector is a file path of a BED file.

input1 <- paste0(path, "/rep1.bed")
input2 <- paste0(path, "/rep2.bed")
input <- c(input1, input2)
input
## [1] "/tmp/RtmpuQHuzr/Rinst252b554903547a/rmspc/extdata/rep1.bed"
## [2] "/tmp/RtmpuQHuzr/Rinst252b554903547a/rmspc/extdata/rep2.bed"

When the mspc function is called, it creates a number of files in the user’s computer. If the user wishes to keep all the files generated in their computer, they can set the argument keep to TRUE.

More information regarding this argument is available in the documentation.

We run the mspc function as follows :

results <- mspc(
    input = input, replicateType = "Technical",
    stringencyThreshold = 1e-8,
    weakThreshold = 1e-4, gamma = 1e-8,
    keep = FALSE,GRanges = TRUE,
    multipleIntersections = "Lowest",
    c = 2,alpha = 0.05)
## Export Directory: /tmp/RtmpYFJOvF_0
## Degree of parallelism is set to 72.
## 
## .::...Parsing Samples....::.
##    #             Filename    Read peaks# Min p-value Mean p-value    Max p-value 
## ---- --------------------    ----------- ----------- ------------    ----------- 
##  1/2                 rep1          5,458  5.012E-071   1.215E-003     1.000E-002 
##  2/2                 rep2          4,119  6.607E-239   1.778E-004     9.550E-003 
## 
## .::..Analyzing Samples...::.
## [1/4] Initializing
## [2/4] Processing samples
## 
  └── 0/6,045   (0.000%) peaks
  └── 2,657/6,045   (43.954%) peaks processed
  └── 6,045/6,045   (100.000%) peaks processed
## [3/4] Performing Multiple testing correction
## [4/4] Creating consensus peaks set
## 
## .::....Saving Results....::.
## 
## .::..Summary Statistics..::.
##    #             Filename    Read peaks# Background      Weak    Stringent   Confirmed   Discarded   TruePositive    FalsePositive   
## ---- --------------------    ----------- ----------  --------    ---------   ---------   ---------   ------------    -------------   
##  1/2                 rep1          5,458    51.319%   39.080%       9.601%     27.318%     21.363%        27.318%           0.000%   
##  2/2                 rep2          4,119    17.747%   48.216%      34.037%     30.104%     52.149%        30.104%           0.000%   
## 
## .::.Consensus Peaks Count.::.
## 1,239
## 
## 
## Elapsed time: 00:00:16.8751714
## All processes successfully finished.

The mspc function prints the results of the MSPC program. The first line of the output printed gives the exported directory, which is the directory where the files generated by the mspc function are created.

The function returns the following:

  1. status: Integer. The exit status of running the mspc function. A 0 exit status means the function ran successfully.
  2. filesCreated: List of character vectors. It lists the names of the files generated while running the mspc function.
  3. GrangesObjects: GRanges list. All the files generated while running the mspc function are imported as GRanges objects, and are combined into a GRanges list.

It is important to note that the mspc function does not always return these three elements. The output of the function depends on the arguments keep and GRanges given to the mspc function.

In this example, we chose to set the argument keep to FALSE, and GRanges to TRUE.

By doing so, we chose to ask the function to return all the files generated as GRanges objects, but to not keep them in the computer. The objects returned by the mspc function in this example are therefore :

results$status
## [1] 0
head(results$GRangesObjects,3)
## $ConsensusPeaks
## GRanges object with 1239 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         32565-33040      * | MSPC_Peak_1239    61.843
##      [2]     chr1         34688-34887      * | MSPC_Peak_1238    14.490
##      [3]     chr1         34973-35206      * | MSPC_Peak_1237    10.042
##      [4]     chr1         38569-38849      * | MSPC_Peak_1236    24.609
##      [5]     chr1       437581-437800      * | MSPC_Peak_1235    11.529
##      ...      ...                 ...    ... .            ...       ...
##   [1235]     chr1 248100316-248100550      * |    MSPC_Peak_5     8.706
##   [1236]     chr1 249152183-249153033      * |    MSPC_Peak_4    44.835
##   [1237]     chr1 249153179-249153549      * |    MSPC_Peak_3    10.678
##   [1238]     chr1 249168024-249168194      * |    MSPC_Peak_2    11.693
##   [1239]     chr1 249232854-249233102      * |    MSPC_Peak_1    23.832
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
## 
## $`rep1/Background`
## GRanges object with 2801 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         10000-10039      * |    MACS_peak_1      2.42
##      [2]     chr1         10102-10190      * |    MACS_peak_2      3.23
##      [3]     chr1         29304-29382      * |    MACS_peak_3      2.44
##      [4]     chr1       132296-132335      * |    MACS_peak_9      3.58
##      [5]     chr1       227521-227560      * |   MACS_peak_11      2.70
##      ...      ...                 ...    ... .            ...       ...
##   [2797]     chr1 248610772-248610811      * | MACS_peak_5442      2.52
##   [2798]     chr1 249104439-249104478      * | MACS_peak_5446      2.02
##   [2799]     chr1 249162600-249162639      * | MACS_peak_5452      3.67
##   [2800]     chr1 249219095-249219134      * | MACS_peak_5455      3.58
##   [2801]     chr1 249230903-249230943      * | MACS_peak_5456      3.50
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
## 
## $`rep1/Confirmed`
## GRanges object with 1491 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         32601-32680      * |    MACS_peak_4      4.08
##      [2]     chr1         32727-32936      * |    MACS_peak_5     17.50
##      [3]     chr1         34690-34797      * |    MACS_peak_6      5.82
##      [4]     chr1         35084-35124      * |    MACS_peak_7      4.59
##      [5]     chr1         38594-38836      * |    MACS_peak_8     10.70
##      ...      ...                 ...    ... .            ...       ...
##   [1487]     chr1 249152329-249152446      * | MACS_peak_5449     10.70
##   [1488]     chr1 249152889-249152949      * | MACS_peak_5450      5.65
##   [1489]     chr1 249153389-249153472      * | MACS_peak_5451      6.28
##   [1490]     chr1 249168083-249168158      * | MACS_peak_5453      4.75
##   [1491]     chr1 249232876-249233088      * | MACS_peak_5458      7.13
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths

Each element of the GRangesObjects of the output can be accessed as such:

results$GRangesObjects$ConsensusPeaks
## GRanges object with 1239 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         32565-33040      * | MSPC_Peak_1239    61.843
##      [2]     chr1         34688-34887      * | MSPC_Peak_1238    14.490
##      [3]     chr1         34973-35206      * | MSPC_Peak_1237    10.042
##      [4]     chr1         38569-38849      * | MSPC_Peak_1236    24.609
##      [5]     chr1       437581-437800      * | MSPC_Peak_1235    11.529
##      ...      ...                 ...    ... .            ...       ...
##   [1235]     chr1 248100316-248100550      * |    MSPC_Peak_5     8.706
##   [1236]     chr1 249152183-249153033      * |    MSPC_Peak_4    44.835
##   [1237]     chr1 249153179-249153549      * |    MSPC_Peak_3    10.678
##   [1238]     chr1 249168024-249168194      * |    MSPC_Peak_2    11.693
##   [1239]     chr1 249232854-249233102      * |    MSPC_Peak_1    23.832
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
results$GRangesObjects$`rep1/Background`
## GRanges object with 2801 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         10000-10039      * |    MACS_peak_1      2.42
##      [2]     chr1         10102-10190      * |    MACS_peak_2      3.23
##      [3]     chr1         29304-29382      * |    MACS_peak_3      2.44
##      [4]     chr1       132296-132335      * |    MACS_peak_9      3.58
##      [5]     chr1       227521-227560      * |   MACS_peak_11      2.70
##      ...      ...                 ...    ... .            ...       ...
##   [2797]     chr1 248610772-248610811      * | MACS_peak_5442      2.52
##   [2798]     chr1 249104439-249104478      * | MACS_peak_5446      2.02
##   [2799]     chr1 249162600-249162639      * | MACS_peak_5452      3.67
##   [2800]     chr1 249219095-249219134      * | MACS_peak_5455      3.58
##   [2801]     chr1 249230903-249230943      * | MACS_peak_5456      3.50
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths

In order to understand better the output of the mspc function, let’s go over the files generated while running the mspc function. These files are listed by the filesCreated object, returned by the mspc function :

  • A log file that contains the execution log : this file contains the information, debugging messages, and exceptions that occurred during the execution.

  • Consensus peaks in standard BED and MSPC format.

  • One folder per each replicates that contains BED files, containing stringent, weak, background, confirmed, discarded, true-positive, and false-positive peaks.

Each category of peaks is defined as such :

  • Background :

Peaks with p-value >= weakThreshold.

  • Weak :

Peaks with stringencyThreshold <= p-value < weakThreshold.

  • Stringent :

Peaks with p-value < stringencyThreshold.

  • Confirmed :

Peaks that:

  1. are supported by at least c peaks from replicates, and
  2. their combined stringency (xSquared) satisfies the given threshold: xSquared >= the inverse of the right-tailed probability of gamma and
  3. if technical replicate, passed all the tests, and if biological replicate, passed at least one test.
  • Discarded :

Peaks that:

  1. does not have minimum required (i.e., c) supporting evidence, or
  2. their combined stringency (xSquared) does not satisfy the given threshold, or
  3. if technical replicate, failed a test.
  • TruePositive :

The confirmed peaks that pass the Benjamini-Hochberg multiple testing correction at level alpha.

  • FalsePositive :

The confirmed peaks that fail Benjamini-Hochberg multiple testing correction at level alpha.

More information about the files generated by the mspc function can be found here.

4.4 Scenario 2: Input as Granges objects

In this second scenario, we suppose the samples we want to use as input data for the mspc function are GRanges objects, loaded in the R environment the user is working on.

To exemplify this scenario, we will import the BED files, included in the package, as GRanges objects into our R environment.

In order to do so, we need to install and load the two following Bioconductor packages: GenomicRanges and rtracklayer.

BiocManager::install("GenomicRanges",dependencies = TRUE)
BiocManager::install("rtracklayer",dependencies = TRUE)

We load these packages to our R session as follows:

library(GenomicRanges)
library(rtracklayer)

We now import the two BED files, that are available in the folder inst/extdata of the package, as GRanges objects.

path <- system.file("extdata", package = "rmspc")
input1 <- paste0(path, "/rep1.bed")
input2 <- paste0(path, "/rep2.bed")

GR1 <- rtracklayer::import(con = input1, format = "bed")
GR2 <- rtracklayer::import(con = input2, format = "bed")

We have now created 2 GRanges objects : GR1 and GR2. Here’s what the GR1 object is like:

GR1
## UCSC track 'R Track'
## UCSCData object with 5458 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         10000-10039      * |    MACS_peak_1      2.42
##      [2]     chr1         10102-10190      * |    MACS_peak_2      3.23
##      [3]     chr1         29304-29382      * |    MACS_peak_3      2.44
##      [4]     chr1         32601-32680      * |    MACS_peak_4      4.08
##      [5]     chr1         32727-32936      * |    MACS_peak_5     17.50
##      ...      ...                 ...    ... .            ...       ...
##   [5454]     chr1 249185288-249185343      * | MACS_peak_5454      5.05
##   [5455]     chr1 249219095-249219134      * | MACS_peak_5455      3.58
##   [5456]     chr1 249230903-249230943      * | MACS_peak_5456      3.50
##   [5457]     chr1 249231135-249231205      * | MACS_peak_5457      5.00
##   [5458]     chr1 249232876-249233088      * | MACS_peak_5458      7.13
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths

We can now combine the GRanges objects, GR1 and GR2, into a GRanges list. A Granges list is a list of several GRanges objects. It is defined as such:

GR <- GenomicRanges::GRangesList("GR1" = GR1, "GR2" = GR2)
GR
## GRangesList object of length 2:
## $GR1
## UCSC track 'R Track'
## UCSCData object with 5458 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         10000-10039      * |    MACS_peak_1      2.42
##      [2]     chr1         10102-10190      * |    MACS_peak_2      3.23
##      [3]     chr1         29304-29382      * |    MACS_peak_3      2.44
##      [4]     chr1         32601-32680      * |    MACS_peak_4      4.08
##      [5]     chr1         32727-32936      * |    MACS_peak_5     17.50
##      ...      ...                 ...    ... .            ...       ...
##   [5454]     chr1 249185288-249185343      * | MACS_peak_5454      5.05
##   [5455]     chr1 249219095-249219134      * | MACS_peak_5455      3.58
##   [5456]     chr1 249230903-249230943      * | MACS_peak_5456      3.50
##   [5457]     chr1 249231135-249231205      * | MACS_peak_5457      5.00
##   [5458]     chr1 249232876-249233088      * | MACS_peak_5458      7.13
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
## 
## $GR2
## UCSC track 'R Track'
## UCSCData object with 4119 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1          9933-10069      * |    MACS_peak_1      7.99
##      [2]     chr1         11143-11340      * |    MACS_peak_2      5.37
##      [3]     chr1         29363-29488      * |    MACS_peak_3      4.42
##      [4]     chr1         32565-33040      * |    MACS_peak_4     44.33
##      [5]     chr1         34688-34887      * |    MACS_peak_5     10.25
##      ...      ...                 ...    ... .            ...       ...
##   [4115]     chr1 249168024-249168194      * | MACS_peak_4115      8.44
##   [4116]     chr1 249200277-249200407      * | MACS_peak_4116      3.62
##   [4117]     chr1 249208247-249208409      * | MACS_peak_4117      9.33
##   [4118]     chr1 249221136-249221304      * | MACS_peak_4118     11.34
##   [4119]     chr1 249232854-249233102      * | MACS_peak_4119     18.48
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths

The GRanges list GR created is the input we will give to the mspc function.

When we give a Granges list to the mspc function as input, each GRanges object of the GRanges list is exported as a BED file into the folder specified by the argument directoryGRangesInput.

More information about the directoryGRangesInput argument in the documentation.

We now will call the mspc function, as follows:

results <- mspc(
    input = GR, replicateType = "Biological",
    stringencyThreshold = 1e-8, weakThreshold = 1e-4,
    gamma =  1e-8, GRanges = TRUE, keep = FALSE,
    multipleIntersections = "Highest",
    c = 2,alpha = 0.05)
## Export Directory: /tmp/RtmpYFJOvF_1
## Degree of parallelism is set to 72.
## 
## .::...Parsing Samples....::.
##    #             Filename    Read peaks# Min p-value Mean p-value    Max p-value 
## ---- --------------------    ----------- ----------- ------------    ----------- 
##  1/2                  gr1          5,458  5.012E-071   1.215E-003     1.000E-002 
##  2/2                  gr2          4,119  6.607E-239   1.778E-004     9.550E-003 
## 
## .::..Analyzing Samples...::.
## [1/4] Initializing
## [2/4] Processing samples
## 
  └── 0/6,045   (0.000%) peaks
  └── 2,657/6,045   (43.954%) peaks processed
  └── 6,045/6,045   (100.000%) peaks processed
## [3/4] Performing Multiple testing correction
## [4/4] Creating consensus peaks set
## 
## .::....Saving Results....::.
## 
## .::..Summary Statistics..::.
##    #             Filename    Read peaks# Background      Weak    Stringent   Confirmed   Discarded   TruePositive    FalsePositive   
## ---- --------------------    ----------- ----------  --------    ---------   ---------   ---------   ------------    -------------   
##  1/2                  gr1          5,458    51.319%   39.080%       9.601%     27.318%     21.363%        27.318%           0.000%   
##  2/2                  gr2          4,119    17.747%   48.216%      34.037%     30.129%     52.124%        30.129%           0.000%   
## 
## .::.Consensus Peaks Count.::.
## 1,239
## 
## 
## Elapsed time: 00:00:15.6906692
## All processes successfully finished.

The objects returned by the mspc function in this example are:

results$status
## [1] 0
tail(results$GRangesObjects)
## $`gr2/Confirmed`
## GRanges object with 1241 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         32565-33040      * |    MACS_peak_4     44.33
##      [2]     chr1         34688-34887      * |    MACS_peak_5     10.25
##      [3]     chr1         34973-35206      * |    MACS_peak_6      6.89
##      [4]     chr1         38569-38849      * |    MACS_peak_7     15.70
##      [5]     chr1       437581-437800      * |   MACS_peak_19      6.95
##      ...      ...                 ...    ... .            ...       ...
##   [1237]     chr1 248100316-248100550      * | MACS_peak_4103      4.83
##   [1238]     chr1 249152183-249153033      * | MACS_peak_4110     32.29
##   [1239]     chr1 249153179-249153549      * | MACS_peak_4111      5.86
##   [1240]     chr1 249168024-249168194      * | MACS_peak_4115      8.44
##   [1241]     chr1 249232854-249233102      * | MACS_peak_4119     18.48
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
## 
## $`gr2/Discarded`
## GRanges object with 2147 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1          9933-10069      * |    MACS_peak_1      7.99
##      [2]     chr1         11143-11340      * |    MACS_peak_2      5.37
##      [3]     chr1         29363-29488      * |    MACS_peak_3      4.42
##      [4]     chr1       132229-132405      * |    MACS_peak_8      7.45
##      [5]     chr1       136294-136419      * |    MACS_peak_9      4.29
##      ...      ...                 ...    ... .            ...       ...
##   [2143]     chr1 249132100-249132234      * | MACS_peak_4108      4.99
##   [2144]     chr1 249132816-249133041      * | MACS_peak_4109      5.08
##   [2145]     chr1 249167198-249167371      * | MACS_peak_4113      9.63
##   [2146]     chr1 249208247-249208409      * | MACS_peak_4117      9.33
##   [2147]     chr1 249221136-249221304      * | MACS_peak_4118     11.34
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
## 
## $`gr2/FalsePositive`
## GRanges object with 0 ranges and 0 metadata columns:
##    seqnames    ranges strand
##       <Rle> <IRanges>  <Rle>
##   -------
##   seqinfo: no sequences
## 
## $`gr2/Stringent`
## GRanges object with 1402 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         32565-33040      * |    MACS_peak_4     44.33
##      [2]     chr1         34688-34887      * |    MACS_peak_5     10.25
##      [3]     chr1         38569-38849      * |    MACS_peak_7     15.70
##      [4]     chr1       432555-433057      * |   MACS_peak_18     14.06
##      [5]     chr1       544675-545070      * |   MACS_peak_25     10.93
##      ...      ...                 ...    ... .            ...       ...
##   [1398]     chr1 249167198-249167371      * | MACS_peak_4113      9.63
##   [1399]     chr1 249168024-249168194      * | MACS_peak_4115      8.44
##   [1400]     chr1 249208247-249208409      * | MACS_peak_4117      9.33
##   [1401]     chr1 249221136-249221304      * | MACS_peak_4118     11.34
##   [1402]     chr1 249232854-249233102      * | MACS_peak_4119     18.48
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
## 
## $`gr2/TruePositive`
## GRanges object with 1241 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1         32565-33040      * |    MACS_peak_4     44.33
##      [2]     chr1         34688-34887      * |    MACS_peak_5     10.25
##      [3]     chr1         34973-35206      * |    MACS_peak_6      6.89
##      [4]     chr1         38569-38849      * |    MACS_peak_7     15.70
##      [5]     chr1       437581-437800      * |   MACS_peak_19      6.95
##      ...      ...                 ...    ... .            ...       ...
##   [1237]     chr1 248100316-248100550      * | MACS_peak_4103      4.83
##   [1238]     chr1 249152183-249153033      * | MACS_peak_4110     32.29
##   [1239]     chr1 249153179-249153549      * | MACS_peak_4111      5.86
##   [1240]     chr1 249168024-249168194      * | MACS_peak_4115      8.44
##   [1241]     chr1 249232854-249233102      * | MACS_peak_4119     18.48
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths
## 
## $`gr2/Weak`
## GRanges object with 1986 ranges and 2 metadata columns:
##          seqnames              ranges strand |           name     score
##             <Rle>           <IRanges>  <Rle> |    <character> <numeric>
##      [1]     chr1          9933-10069      * |    MACS_peak_1      7.99
##      [2]     chr1         11143-11340      * |    MACS_peak_2      5.37
##      [3]     chr1         29363-29488      * |    MACS_peak_3      4.42
##      [4]     chr1         34973-35206      * |    MACS_peak_6      6.89
##      [5]     chr1       132229-132405      * |    MACS_peak_8      7.45
##      ...      ...                 ...    ... .            ...       ...
##   [1982]     chr1 248100316-248100550      * | MACS_peak_4103      4.83
##   [1983]     chr1 249120099-249120329      * | MACS_peak_4105      4.08
##   [1984]     chr1 249132100-249132234      * | MACS_peak_4108      4.99
##   [1985]     chr1 249132816-249133041      * | MACS_peak_4109      5.08
##   [1986]     chr1 249153179-249153549      * | MACS_peak_4111      5.86
##   -------
##   seqinfo: 1 sequence from an unspecified genome; no seqlengths

5 Session Information

The output in this vignette was produced under the following conditions:

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
## [1] rtracklayer_1.58.0   GenomicRanges_1.50.0 GenomeInfoDb_1.34.0 
## [4] IRanges_2.32.0       S4Vectors_0.36.0     BiocGenerics_0.44.0 
## [7] rmspc_1.4.0          BiocStyle_2.26.0    
## 
## loaded via a namespace (and not attached):
##  [1] SummarizedExperiment_1.28.0 xfun_0.34                  
##  [3] bslib_0.4.0                 lattice_0.20-45            
##  [5] htmltools_0.5.3             yaml_2.3.6                 
##  [7] XML_3.99-0.12               rlang_1.0.6                
##  [9] jquerylib_0.1.4             BiocParallel_1.32.0        
## [11] matrixStats_0.62.0          GenomeInfoDbData_1.2.9     
## [13] stringr_1.4.1               zlibbioc_1.44.0            
## [15] MatrixGenerics_1.10.0       Biostrings_2.66.0          
## [17] codetools_0.2-18            evaluate_0.17              
## [19] restfulr_0.0.15             Biobase_2.58.0             
## [21] knitr_1.40                  fastmap_1.1.0              
## [23] ps_1.7.2                    parallel_4.2.1             
## [25] BiocManager_1.30.19         cachem_1.0.6               
## [27] DelayedArray_0.24.0         jsonlite_1.8.3             
## [29] XVector_0.38.0              Rsamtools_2.14.0           
## [31] rjson_0.2.21                digest_0.6.30              
## [33] stringi_1.7.8               bookdown_0.29              
## [35] processx_3.8.0              BiocIO_1.8.0               
## [37] grid_4.2.1                  cli_3.4.1                  
## [39] tools_4.2.1                 bitops_1.0-7               
## [41] magrittr_2.0.3              sass_0.4.2                 
## [43] RCurl_1.98-1.9              crayon_1.5.2               
## [45] Matrix_1.5-1                rmarkdown_2.17             
## [47] R6_2.5.1                    GenomicAlignments_1.34.0   
## [49] compiler_4.2.1

6 Bibliographic references

Jalili, V., Matteucci, M., Masseroli, M., & Morelli, M. J. (2015). Using combined evidence from replicates to evaluate ChIP-seq peaks. Bioinformatics, 31(17), 2761-2769. Link to the article