Vignette of the pengls package

Stijn Hawinkel

1 Introduction

This vignette demonstrates the use of the pengls package for high-dimensional data with spatial or temporal autocorrelation. It consists of an iterative loop around the nlme and glmnet packages. Currently, only continuous outcomes and \(R^2\) and MSE as performance measure are implemented.

2 Installation instuctions

The pengls package is available from BioConductor, and can be installed as follows:

library(BiocManager)
install("pengls")

Once installed, it can be loaded and version info printed.

suppressPackageStartupMessages(library(pengls))
cat("pengls package version", as.character(packageVersion("pengls")), "\n")
## pengls package version 1.4.0

3 Illustration

3.1 Spatial autocorrelation

We first create a toy dataset with spatial coordinates.

The pengls method requires prespecification of a functional form for the autocorrelation. This is done through the corStruct objects defined by the nlme package. We specify a correlation decaying as a Gaussian curve with distance, and with a nugget parameter. The nugget parameter is a proportion that indicates how much of the correlation structure explained by independent errors; the rest is attributed to spatial autocorrelation. The starting values are chosen as reasonable guesses; they will be overwritten in the fitting process.

Finally the model is fitted with a single outcome variable and large number of regressors, with the chosen covariance structure and for a prespecified penalty parameter \(\lambda=0.2\).

## Starting iterations...
## Iteration 1 
## Iteration 2 
## Iteration 3 
## Iteration 4 
## Iteration 5 
## Iteration 6 
## Iteration 7 
## Iteration 8 
## Iteration 9 
## Iteration 10 
## Iteration 11 
## Iteration 12 
## Iteration 13 
## Iteration 14 
## Iteration 15 
## Iteration 16 
## Iteration 17 
## Iteration 18 
## Iteration 19 
## Iteration 20 
## Iteration 21 
## Iteration 22 
## Iteration 23 
## Iteration 24 
## Iteration 25 
## Iteration 26 
## Iteration 27 
## Iteration 28 
## Iteration 29 
## Iteration 30
## Warning in pengls(data = df, outVar = "a", xNames = grep(names(df), pattern = "b", : No convergence achieved in pengls!

Standard extraction functions like print(), coef() and predict() are defined for the new “pengls” object.

## pengls model with correlation structure: corGaus 
##  and 49 non-zero coefficients

3.2 Temporal autocorrelation

The method can also account for temporal autocorrelation by defining another correlation structure from the nlme package, e.g. autocorrelation structure of order 1:

The fitting command is similar, this time the \(\lambda\) parameter is found through cross-validation of the naive glmnet (for full cross-validation , see below). We choose \(\alpha=0.5\) this time, fitting an elastic net model.

## Fitting naieve model...
## Starting iterations...
## Iteration 1 
## Iteration 2

Show the output

## pengls model with correlation structure: corAR1 
##  and 2 non-zero coefficients

3.3 Penalty parameter and cross-validation

The pengls package also provides cross-validation for finding the optimal \(\lambda\) value. If the tuning parameter \(\lambda\) is not supplied, the optimal \(\lambda\) according to cross-validation with the naive glmnet function (the one that ignores dependence) is used. Hence we recommend to use the following function to use cross-validation. Multithreading is supported through the BiocParallel package :

The function is called similarly to cv.glmnet:

Check the result:

## Cross-validated pengls model with correlation structure: corGaus 
##  and 0 non-zero coefficients.
##  3 fold cross-validation yielded an estimated R2 of -0.2438712 .

By default, the 1 standard error is used to determine the optimal value of \(\lambda\) :

## [1] 1.468952
## [1] -0.2438712

Extract coefficients and fold IDs.

## [1] 0 0 0 0 0 0
## 204  76  17 221 192  56  52 201  18  15  54   7 190  16 143 186 220  74  80 133 
##   1   3   3   1   1   2   2   1   3   2   2   3   1   3   1   1   1   2   3   1 
## 132   1  71  43 127 
##   1   3   2   2   1

By default, blocked cross-validation is used, but random cross-validation is also available (but not recommended for timecourse or spatial data). First we illustrate the different ways graphically, again using the timecourse example:

To perform random cross-validation

To negate baseline differences at different timepoints, it may be useful to center or scale the outcomes in the cross validation. For instance for centering only:

## [1] 0.9949131

Alternatively, the mean squared error (MSE) can be used as loss function, rather than the default \(R^2\):

4 Session info

sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] BiocParallel_1.32.0 nlme_3.1-160        pengls_1.4.0       
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.9       knitr_1.40       magrittr_2.0.3   splines_4.2.1   
##  [5] lattice_0.20-45  R6_2.5.1         rlang_1.0.6      fastmap_1.1.0   
##  [9] foreach_1.5.2    highr_0.9        stringr_1.4.1    tools_4.2.1     
## [13] parallel_4.2.1   grid_4.2.1       glmnet_4.1-4     xfun_0.34       
## [17] cli_3.4.1        jquerylib_0.1.4  htmltools_0.5.3  iterators_1.0.14
## [21] survival_3.4-0   yaml_2.3.6       digest_0.6.30    Matrix_1.5-1    
## [25] sass_0.4.2       codetools_0.2-18 shape_1.4.6      cachem_1.0.6    
## [29] evaluate_0.17    rmarkdown_2.17   stringi_1.7.8    compiler_4.2.1  
## [33] bslib_0.4.0      jsonlite_1.8.3