Load the package with the library function.
library(tidyverse)
library(ggplot2)
library(dce)
set.seed(42)
We provide access to the following topological pathway databases using graphite (Sales et al. 2012) in a processed format. This format looks as follows:
dce::df_pathway_statistics %>%
arrange(desc(node_num)) %>%
head(10) %>%
knitr::kable()
database | pathway_id | pathway_name | node_num | edge_num |
---|---|---|---|---|
reactome | R-HSA-162582 | Signaling Pathways | 2488 | 62068 |
reactome | R-HSA-1430728 | Metabolism | 2047 | 85543 |
reactome | R-HSA-392499 | Metabolism of proteins | 1894 | 52807 |
reactome | R-HSA-1643685 | Disease | 1774 | 55469 |
reactome | R-HSA-168256 | Immune System | 1771 | 58277 |
panther | P00057 | Wnt signaling pathway | 1644 | 195344 |
reactome | R-HSA-74160 | Gene expression (Transcription) | 1472 | 32493 |
reactome | R-HSA-597592 | Post-translational protein modification | 1394 | 26399 |
kegg | hsa:01100 | Metabolic pathways | 1343 | 22504 |
reactome | R-HSA-73857 | RNA Polymerase II Transcription | 1339 | 25294 |
Let’s see how many pathways each database provides:
dce::df_pathway_statistics %>%
count(database, sort = TRUE, name = "pathway_number") %>%
knitr::kable()
database | pathway_number |
---|---|
pathbank | 48685 |
smpdb | 48671 |
reactome | 2406 |
wikipathways | 640 |
kegg | 323 |
panther | 94 |
pharmgkb | 90 |
Next, we can see how the pathway sizes are distributed for each database:
dce::df_pathway_statistics %>%
ggplot(aes(x = node_num)) +
geom_histogram(bins = 30) +
facet_wrap(~ database, scales = "free") +
theme_minimal()
It is easily possible to plot pathways:
pathways <- get_pathways(
pathway_list = list(
pathbank = c("Lactose Synthesis"),
kegg = c("Fatty acid biosynthesis")
)
)
lapply(pathways, function(x) {
plot_network(
as(x$graph, "matrix"),
visualize_edge_weights = FALSE,
arrow_size = 0.02,
shadowtext = TRUE
) +
ggtitle(x$pathway_name)
})
## [[1]]
##
## [[2]]
sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] dce_1.6.0 graph_1.76.0
## [3] cowplot_1.1.1 forcats_0.5.2
## [5] stringr_1.4.1 dplyr_1.0.10
## [7] purrr_0.3.5 readr_2.1.3
## [9] tidyr_1.2.1 tibble_3.1.8
## [11] tidyverse_1.3.2 TCGAutils_1.18.0
## [13] curatedTCGAData_1.19.2 MultiAssayExperiment_1.24.0
## [15] SummarizedExperiment_1.28.0 Biobase_2.58.0
## [17] GenomicRanges_1.50.0 GenomeInfoDb_1.34.0
## [19] IRanges_2.32.0 S4Vectors_0.36.0
## [21] BiocGenerics_0.44.0 MatrixGenerics_1.10.0
## [23] matrixStats_0.62.0 ggraph_2.1.0
## [25] ggplot2_3.3.6 BiocStyle_2.26.0
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 rtracklayer_1.58.0
## [3] prabclus_2.3-2 bit64_4.0.5
## [5] knitr_1.40 multcomp_1.4-20
## [7] DelayedArray_0.24.0 data.table_1.14.4
## [9] wesanderson_0.3.6 KEGGREST_1.38.0
## [11] RCurl_1.98-1.9 generics_0.1.3
## [13] snow_0.4-4 metap_1.8
## [15] GenomicFeatures_1.50.0 TH.data_1.1-1
## [17] RSQLite_2.2.18 shadowtext_0.1.2
## [19] proxy_0.4-27 bit_4.0.4
## [21] tzdb_0.3.0 mutoss_0.1-12
## [23] xml2_1.3.3 lubridate_1.8.0
## [25] httpuv_1.6.6 assertthat_0.2.1
## [27] viridis_0.6.2 gargle_1.2.1
## [29] amap_0.8-19 xfun_0.34
## [31] hms_1.1.2 jquerylib_0.1.4
## [33] evaluate_0.17 promises_1.2.0.1
## [35] DEoptimR_1.0-11 fansi_1.0.3
## [37] restfulr_0.0.15 progress_1.2.2
## [39] dbplyr_2.2.1 readxl_1.4.1
## [41] Rgraphviz_2.42.0 igraph_1.3.5
## [43] DBI_1.1.3 apcluster_1.4.10
## [45] googledrive_2.0.0 RcppArmadillo_0.11.4.0.1
## [47] ellipsis_0.3.2 backports_1.4.1
## [49] bookdown_0.29 permute_0.9-7
## [51] harmonicmeanp_3.0 biomaRt_2.54.0
## [53] vctrs_0.5.0 abind_1.4-5
## [55] Linnorm_2.22.0 cachem_1.0.6
## [57] RcppEigen_0.3.3.9.2 withr_2.5.0
## [59] sfsmisc_1.1-13 ggforce_0.4.1
## [61] robustbase_0.95-0 bdsmatrix_1.3-6
## [63] vegan_2.6-4 GenomicAlignments_1.34.0
## [65] pcalg_2.7-7 prettyunits_1.1.1
## [67] mclust_6.0.0 mnormt_2.1.1
## [69] cluster_2.1.4 BiocBaseUtils_1.0.0
## [71] ExperimentHub_2.6.0 GenomicDataCommons_1.22.0
## [73] crayon_1.5.2 ellipse_0.4.3
## [75] labeling_0.4.2 FMStable_0.1-4
## [77] edgeR_3.40.0 pkgconfig_2.0.3
## [79] qqconf_1.3.0 tweenr_2.0.2
## [81] nlme_3.1-160 ggm_2.5
## [83] nnet_7.3-18 rlang_1.0.6
## [85] diptest_0.76-0 lifecycle_1.0.3
## [87] sandwich_3.0-2 filelock_1.0.2
## [89] BiocFileCache_2.6.0 mathjaxr_1.6-0
## [91] modelr_0.1.9 AnnotationHub_3.6.0
## [93] cellranger_1.1.0 polyclip_1.10-4
## [95] Matrix_1.5-1 zoo_1.8-11
## [97] reprex_2.0.2 googlesheets4_1.0.1
## [99] png_0.1-7 viridisLite_0.4.1
## [101] rjson_0.2.21 bitops_1.0-7
## [103] Biostrings_2.66.0 blob_1.2.3
## [105] scales_1.2.1 plyr_1.8.7
## [107] memoise_2.0.1 graphite_1.44.0
## [109] magrittr_2.0.3 gdata_2.18.0.1
## [111] zlibbioc_1.44.0 compiler_4.2.1
## [113] BiocIO_1.8.0 clue_0.3-62
## [115] plotrix_3.8-2 Rsamtools_2.14.0
## [117] cli_3.4.1 XVector_0.38.0
## [119] MASS_7.3-58.1 mgcv_1.8-41
## [121] tidyselect_1.2.0 stringi_1.7.8
## [123] highr_0.9 yaml_2.3.6
## [125] locfit_1.5-9.6 ggrepel_0.9.1
## [127] grid_4.2.1 sass_0.4.2
## [129] tools_4.2.1 parallel_4.2.1
## [131] snowfall_1.84-6.2 gridExtra_2.3
## [133] farver_2.1.1 Rtsne_0.16
## [135] digest_0.6.30 BiocManager_1.30.19
## [137] flexclust_1.4-1 shiny_1.7.3
## [139] mnem_1.14.0 fpc_2.2-9
## [141] ppcor_1.1 Rcpp_1.0.9
## [143] broom_1.0.1 BiocVersion_3.16.0
## [145] later_1.3.0 org.Hs.eg.db_3.16.0
## [147] httr_1.4.4 ggdendro_0.1.23
## [149] AnnotationDbi_1.60.0 kernlab_0.9-31
## [151] naturalsort_0.1.3 Rdpack_2.4
## [153] colorspace_2.0-3 rvest_1.0.3
## [155] XML_3.99-0.12 fs_1.5.2
## [157] splines_4.2.1 RBGL_1.74.0
## [159] statmod_1.4.37 sn_2.1.0
## [161] expm_0.999-6 graphlayouts_0.8.3
## [163] multtest_2.54.0 flexmix_2.3-18
## [165] xtable_1.8-4 jsonlite_1.8.3
## [167] tidygraph_1.2.2 corpcor_1.6.10
## [169] modeltools_0.2-23 R6_2.5.1
## [171] gmodels_2.18.1.1 TFisher_0.2.0
## [173] pillar_1.8.1 htmltools_0.5.3
## [175] mime_0.12 glue_1.6.2
## [177] fastmap_1.1.0 BiocParallel_1.32.0
## [179] class_7.3-20 interactiveDisplayBase_1.36.0
## [181] codetools_0.2-18 tsne_0.1-3.1
## [183] mvtnorm_1.1-3 utf8_1.2.2
## [185] lattice_0.20-45 bslib_0.4.0
## [187] logger_0.2.2 numDeriv_2016.8-1.1
## [189] curl_4.3.3 gtools_3.9.3
## [191] magick_2.7.3 survival_3.4-0
## [193] limma_3.54.0 rmarkdown_2.17
## [195] fastICA_1.2-3 munsell_0.5.0
## [197] e1071_1.7-12 fastcluster_1.2.3
## [199] GenomeInfoDbData_1.2.9 reshape2_1.4.4
## [201] haven_2.5.1 gtable_0.3.1
## [203] rbibutils_2.2.9
Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.