This vignette demonstrates the use of the SpatialDecon package to estimate cell abundance in spatial gene expression studies.
We’ll analyze a small GeoMx dataset from a lung tumor, looking for abundance of different immune cell types. This dataset has 30 ROIs. In each ROI, Tumor and Microenvironment segments have been profiled separately.
First, we load the package:
library(SpatialDecon)
#> Registered S3 method overwritten by 'GGally':
#> method from
#> +.gg ggplot2
Now let’s load our example data and examine it:
data("mini_geomx_dataset")
norm = mini_geomx_dataset$normalized
raw = mini_geomx_dataset$raw
annot = mini_geomx_dataset$annot
dim(raw)
#> [1] 545 30
head(annot)
#> ROI AOI.name x y nuclei
#> ICP20th.L11.ICPKilo.ROI10.TME.B09 ROI10 TME 5400 8000 879
#> ICP20th.L11.ICPKilo.ROI10.Tumor.B08 ROI10 Tumor 5400 8000 555
#> ICP20th.L11.ICPKilo.ROI11.TME.B11 ROI11 TME 6000 8000 631
#> ICP20th.L11.ICPKilo.ROI11.Tumor.B10 ROI11 Tumor 6000 8000 569
#> ICP20th.L11.ICPKilo.ROI12.TME.C01 ROI12 TME 6600 8000 703
#> ICP20th.L11.ICPKilo.ROI12.Tumor.B12 ROI12 Tumor 6600 8000 667
raw[seq_len(5), seq_len(5)]
#> ICP20th.L11.ICPKilo.ROI10.TME.B09 ICP20th.L11.ICPKilo.ROI10.Tumor.B08
#> A2M 76 20
#> ABCB1 9 15
#> ACP5 115 41
#> ADAM12 12 12
#> ADORA3 14 8
#> ICP20th.L11.ICPKilo.ROI11.TME.B11 ICP20th.L11.ICPKilo.ROI11.Tumor.B10
#> A2M 104 22
#> ABCB1 7 10
#> ACP5 176 56
#> ADAM12 10 11
#> ADORA3 10 13
#> ICP20th.L11.ICPKilo.ROI12.TME.C01
#> A2M 91
#> ABCB1 11
#> ACP5 120
#> ADAM12 13
#> ADORA3 11
# better segment names:
colnames(norm) = colnames(raw) = rownames(annot) =
paste0(annot$ROI, annot$AOI.name)
The spatialdecon function takes 3 arguments of expression data:
We estimate each data point’s expected background from the negative control probes from its corresponding observation:
# use the NegProbe to estimate per-observation background
per.observation.mean.neg = norm["NegProbe", ]
# and define a background matrix in which each column (observation) is the
# appropriate value of per-observation background:
bg = sweep(norm * 0, 2, per.observation.mean.neg, "+")
dim(bg)
#> [1] 545 30
A note for background estimation: in studies with two probesets, the genes from each probeset will have distinct background values, and the above code should be run separately for each probeset using its corresponding NegProbe value. Alternatively, the “derive_GeoMx_background” can do this automatically:
A “cell profile matrix” is a pre-defined matrix that specifies the expected expression profiles of each cell type in the experiment. The SpatialDecon library comes with one such matrix pre-loaded, the “SafeTME” matrix, designed for estimation of immune and stroma cells in the tumor microenvironment. (This matrix was designed to avoid genes commonly expressed by cancer cells; see the SpatialDecon manuscript for details.)
Let’s take a glance at the safeTME matrix:
data("safeTME")
data("safeTME.matches")
signif(safeTME[seq_len(3), seq_len(3)], 2)
#> macrophages mast B.naive
#> A2M 0.8500 0.044 0.0043
#> ABCB1 0.0021 0.023 0.0250
#> ABCB4 0.0044 0.000 0.2200
heatmap(sweep(safeTME, 1, apply(safeTME, 1, max), "/"),
labRow = NA, margins = c(10, 5))
For studies of other tissue types, we have provided a library of cell profile matrices, available on Github and downloadable with the “download_profile_matrix” function.
For a complete list of matrices, see CellProfileLibrary GitHub Page
Below we download a matrix of cell profiles derived from scRNA-seq of a mouse spleen.
mousespleen <- download_profile_matrix(species = "Mouse",
age_group = "Adult",
matrixname = "Spleen_MCA")
dim(mousespleen)
#> [1] 11125 9
mousespleen[1:4,1:4]
#> Dendritic.cell.S100a4.high Dendritic.cell.Siglech.high
#> 0610009B22Rik 0.02985075 0.0000000
#> 0610010F05Rik 0.00000000 0.0000000
#> 0610010K14Rik 0.02985075 0.0000000
#> 0610012G03Rik 0.08955224 0.1111111
#> Granulocyte Macrophage
#> 0610009B22Rik 0.00000000 0.00000000
#> 0610010F05Rik 0.00000000 0.00000000
#> 0610010K14Rik 0.00000000 0.03846154
#> 0610012G03Rik 0.08571429 0.03846154
head(cellGroups)
#> $Dendritic
#> [1] "Dendritic.cell.S100a4.high" "Dendritic.cell.Siglech.high"
#>
#> $Granulocyte
#> [1] "Granulocyte"
#>
#> $Macrophage
#> [1] "Macrophage"
#>
#> $`Marginal zone B`
#> [1] "Marginal.zone.B.cell"
#>
#> $Monocyte
#> [1] "Monocyte"
#>
#> $NK
#> [1] "NK.cell"
metadata
#> Profile Matrix Tissue Species Strain Age Age Group
#> 33 MCA Spleen Mouse C57BL/6 6-10 weeks Adult
#> URL
#> 33 https://pubmed.ncbi.nlm.nih.gov/29474909/
#> Citation
#> 33 Han, X. et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell172, 1091-1107.e17 (2018).
heatmap(sweep(mousespleen, 1, apply(mousespleen, 1, max), "/"),
labRow = NA, margins = c(10, 5), cexCol = 0.7)
For studies where the provided cell profile matrices aren’t sufficient or if a specific single cell dataset is wanted, we can make a custom profile matrix using the function create_profile_matrix().
This mini single cell dataset is a fraction of the data from Kinchen, J. et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell 175, 372-386.e17 (2018).
data("mini_singleCell_dataset")
mini_singleCell_dataset$mtx@Dim # genes x cells
#> [1] 1814 250
as.matrix(mini_singleCell_dataset$mtx)[1:4,1:4]
#> ACTGCTCGTAAGTTCC.S90 TGAAAGAAGGCGCTCT.S66 AGCTTGAGTTTGGGCC.S66
#> PLEKHN1 0 0 0
#> PERM1 0 0 0
#> C1orf159 0 0 0
#> TTLL10 0 0 0
#> ACGGCCATCGTCTGAA.S66
#> PLEKHN1 0
#> PERM1 0
#> C1orf159 0
#> TTLL10 0
head(mini_singleCell_dataset$annots)
#> CellID LabeledCellType
#> 2660 ACTGCTCGTAAGTTCC.S90 stromal cell
#> 2162 TGAAAGAAGGCGCTCT.S66 glial cell
#> 368 AGCTTGAGTTTGGGCC.S66 endothelial cell
#> 238 ACGGCCATCGTCTGAA.S66 stromal cell
#> 4158 TCTCTAACACTGTTAG.S90 stromal cell
#> 2611 ACGATGTGTGTGGTTT.S90 stromal cell
table(mini_singleCell_dataset$annots$LabeledCellType)
#>
#> endothelial cell glial cell
#> 14 12
#> pericyte cell plasma cell
#> 3 30
#> smooth muscle cell of colon stromal cell
#> 1 190
Pericyte cell and smooth muscle cell of colon will be dropped from this matrix due to low cell count. The average expression across all cells of one type is returned so the more cells of one type, the better reflection of the true gene expression. The confidence in these averages can be changed using the minCellNum filter.
custom_mtx <- create_profile_matrix(mtx = mini_singleCell_dataset$mtx, # cell x gene count matrix
cellAnnots = mini_singleCell_dataset$annots, # cell annotations with cell type and cell name as columns
cellTypeCol = "LabeledCellType", # column containing cell type
cellNameCol = "CellID", # column containing cell ID/name
matrixName = "custom_mini_colon", # name of final profile matrix
outDir = NULL, # path to desired output directory, set to NULL if matrix should not be written
normalize = FALSE, # Should data be normalized?
minCellNum = 5, # minimum number of cells of one type needed to create profile, exclusive
minGenes = 10, # minimum number of genes expressed in a cell, exclusive
scalingFactor = 5, # what should all values be multiplied by for final matrix
discardCellTypes = TRUE) # should cell types be filtered for types like mitotic, doublet, low quality, unknown, etc.
#> [1] "Creating Atlas"
#> [1] "1 / 6 : stromal cell"
#> [1] "2 / 6 : glial cell"
#> [1] "3 / 6 : endothelial cell"
#> [1] "4 / 6 : plasma cell"
#> [1] "5 / 6 : pericyte cell"
#> Warning in create_profile_matrix(mtx = mini_singleCell_dataset$mtx, cellAnnots = mini_singleCell_dataset$annots, :
#> pericyte cell was dropped from matrix because it didn't have enough viable cells based on current filtering thresholds.
#> If this cell type is necessary consider changing minCellNum or minGenes
#> [1] "6 / 6 : smooth muscle cell of colon"
#> Warning in create_profile_matrix(mtx = mini_singleCell_dataset$mtx, cellAnnots = mini_singleCell_dataset$annots, :
#> smooth muscle cell of colon was dropped from matrix because it didn't have enough viable cells based on current filtering thresholds.
#> If this cell type is necessary consider changing minCellNum or minGenes
head(custom_mtx)
#> stromal cell glial cell endothelial cell plasma cell
#> PLEKHN1 0.0000000 0 0.0000000 0.05787067
#> PERM1 0.1167131 0 0.0000000 0.00000000
#> C1orf159 0.0000000 0 0.0000000 0.07922668
#> TTLL10 0.0000000 0 0.1853931 0.00000000
#> TAS1R3 0.0000000 0 0.0000000 0.07039008
#> ATAD3C 0.1219237 0 0.0000000 0.07922668
heatmap(sweep(custom_mtx, 1, apply(custom_mtx, 1, max), "/"),
labRow = NA, margins = c(10, 5), cexCol = 0.7)
Custom matrices can be created from all single cell data classes as long as a counts matrix and cell annotations can be passed to the function. Here is an example of creating a matrix using a Seurat object.
library(SeuratObject)
#> Attaching sp
data("mini_singleCell_dataset")
rownames(mini_singleCell_dataset$annots) <- mini_singleCell_dataset$annots$CellID
seuratObject <- CreateSeuratObject(counts = mini_singleCell_dataset$mtx,
meta.data = mini_singleCell_dataset$annots)
Idents(seuratObject) <- seuratObject$LabeledCellType
rm(mini_singleCell_dataset)
annots <- data.frame(cbind(cellType=as.character(Idents(seuratObject)),
cellID=names(Idents(seuratObject))))
custom_mtx_seurat <- create_profile_matrix(mtx = seuratObject@assays$RNA@counts,
cellAnnots = annots,
cellTypeCol = "cellType",
cellNameCol = "cellID",
matrixName = "custom_mini_colon",
outDir = NULL,
normalize = FALSE,
minCellNum = 5,
minGenes = 10)
#> [1] "Creating Atlas"
#> [1] "1 / 6 : stromal cell"
#> [1] "2 / 6 : glial cell"
#> [1] "3 / 6 : endothelial cell"
#> [1] "4 / 6 : plasma cell"
#> [1] "5 / 6 : pericyte cell"
#> Warning in create_profile_matrix(mtx = seuratObject@assays$RNA@counts, cellAnnots = annots, :
#> pericyte cell was dropped from matrix because it didn't have enough viable cells based on current filtering thresholds.
#> If this cell type is necessary consider changing minCellNum or minGenes
#> [1] "6 / 6 : smooth muscle cell of colon"
#> Warning in create_profile_matrix(mtx = seuratObject@assays$RNA@counts, cellAnnots = annots, :
#> smooth muscle cell of colon was dropped from matrix because it didn't have enough viable cells based on current filtering thresholds.
#> If this cell type is necessary consider changing minCellNum or minGenes
head(custom_mtx_seurat)
#> stromal cell glial cell endothelial cell plasma cell
#> PLEKHN1 0.0000000 0 0.0000000 0.05787067
#> PERM1 0.1167131 0 0.0000000 0.00000000
#> C1orf159 0.0000000 0 0.0000000 0.07922668
#> TTLL10 0.0000000 0 0.1853931 0.00000000
#> TAS1R3 0.0000000 0 0.0000000 0.07039008
#> ATAD3C 0.1219237 0 0.0000000 0.07922668
paste("custom_mtx and custom_mtx_seurat are identical", all(custom_mtx == custom_mtx_seurat))
#> [1] "custom_mtx and custom_mtx_seurat are identical TRUE"
Now our data is ready for deconvolution. First we’ll show how to use spatialdecon under the basic settings, omitting optional bells and whistles.
res = spatialdecon(norm = norm,
bg = bg,
X = safeTME,
align_genes = TRUE)
str(res)
#> List of 10
#> $ beta : num [1:18, 1:30] 8.529 0.738 0.702 0.13 0.253 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ sigmas : num [1:18, 1:18, 1:30] 2.9734 -0.0203 -0.0168 -0.018 0.0122 ...
#> ..- attr(*, "dimnames")=List of 3
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ yhat : num [1:544, 1:30] 59.58 1.68 29.7 2.35 2.15 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:544] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ resids : num [1:544, 1:30] -1.794 0.287 -0.19 -0.879 0.51 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:544] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ p : num [1:18, 1:30] 7.57e-07 6.22e-03 5.75e-01 9.29e-01 5.22e-01 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ t : num [1:18, 1:30] 4.9461 2.7357 0.5601 0.0889 0.64 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ se : num [1:18, 1:30] 1.724 0.27 1.253 1.459 0.396 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ prop_of_all : num [1:18, 1:30] 0.4078 0.0353 0.0336 0.0062 0.0121 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ prop_of_nontumor: num [1:18, 1:30] 0.4078 0.0353 0.0336 0.0062 0.0121 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ X : num [1:544, 1:18] 0.74124 0.00185 3.09289 0.01374 0.11294 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:544] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
We’re most interested in “beta”, the matrix of estimated cell abundances.
spatialdecon has several abilities beyond basic deconvolution:
Let’s take a look at an example cell matching object:
str(safeTME.matches)
#> List of 14
#> $ macrophages : chr "macrophages"
#> $ mast : chr "mast"
#> $ B : chr [1:2] "B.naive" "B.memory"
#> $ plasma : chr "plasma"
#> $ CD4.T.cells : chr [1:2] "T.CD4.naive" "T.CD4.memory"
#> $ CD8.T.cells : chr [1:2] "T.CD8.naive" "T.CD8.memory"
#> $ NK : chr "NK"
#> $ pDC : chr "pDCs"
#> $ mDCs : chr "mDCs"
#> $ monocytes : chr [1:2] "monocytes.C" "monocytes.NC.I"
#> $ neutrophils : chr "neutrophils"
#> $ Treg : chr "Treg"
#> $ endothelial.cells: chr "endothelial.cells"
#> $ fibroblasts : chr "fibroblasts"
Now let’s run spatialdecon:
# vector identifying pure tumor segments:
annot$istumor = (annot$AOI.name == "Tumor")
# run spatialdecon with all the bells and whistles:
restils = spatialdecon(norm = norm, # normalized data
raw = raw, # raw data, used to down-weight low-count observations
bg = bg, # expected background counts for every data point in norm
X = safeTME, # safeTME matrix, used by default
cellmerges = safeTME.matches, # safeTME.matches object, used by default
cell_counts = annot$nuclei, # nuclei counts, used to estimate total cells
is_pure_tumor = annot$istumor, # identities of the Tumor segments/observations
n_tumor_clusters = 5) # how many distinct tumor profiles to append to safeTME
str(restils)
#> List of 14
#> $ beta : num [1:14, 1:30] 4.9748 0.44963 0.00666 0 0.51277 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ yhat : num [1:544, 1:30] 26.66 2.55 23.19 1.59 2.55 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:544] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ resids : num [1:544, 1:30] -0.633 -0.316 0.167 -0.319 0.263 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:544] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ p : num [1:14, 1:30] 2.39e-09 8.46e-05 9.79e-01 1.00 7.18e-01 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ t : num [1:14, 1:30] 5.9688 3.9311 0.0266 0 0.3609 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ se : num [1:14, 1:30] 0.833 0.114 0.25 0.149 1.421 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ beta.granular : num [1:23, 1:30] 4.9748 0.44963 0.00666 0 0 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:23] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ sigma.granular : num [1:23, 1:23, 1:30] 0.694663 -0.002567 -0.000412 0.002024 -0.00123 ...
#> ..- attr(*, "dimnames")=List of 3
#> .. ..$ : chr [1:23] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:23] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ sigma : num [1:14, 1:14, 1:30] 0.69466 -0.00257 0.00161 -0.00123 0.05047 ...
#> ..- attr(*, "dimnames")=List of 3
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ prop_of_all : num [1:14, 1:30] 0.54558 0.04931 0.00073 0 0.05624 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ prop_of_nontumor : num [1:14, 1:30] 0.54558 0.04931 0.00073 0 0.05624 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ cell.counts :List of 2
#> ..$ cells.per.100: num [1:14, 1:30] 20.211 1.827 0.027 0 2.083 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> ..$ cell.counts : num [1:14, 1:30] 177.659 16.057 0.238 0 18.312 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:14] "macrophages" "mast" "B" "plasma" ...
#> .. .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ cell.counts.granular:List of 2
#> ..$ cells.per.100: num [1:18, 1:30] 20.211 1.827 0.027 0 0 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> ..$ cell.counts : num [1:18, 1:30] 177.659 16.057 0.238 0 0 ...
#> .. ..- attr(*, "dimnames")=List of 2
#> .. .. ..$ : chr [1:18] "macrophages" "mast" "B.naive" "B.memory" ...
#> .. .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ X : num [1:544, 1:23] 0.74124 0.00185 3.09289 0.01374 0.11294 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:544] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:23] "macrophages" "mast" "B.naive" "B.memory" ...
There are quite a few readouts here. Let’s review the important ones:
To illustrate the derivation of tumor profiles, let’s look at the cell profile matrix output by spatialdecon:
Note the new tumor-specific columns.
Finally, let’s compare deconvolution results from basic vs. the advanced setting with tumor profiles appended (just for a few cell types):
par(mfrow = c(2, 3))
par(mar = c(5,7,2,1))
for (i in seq_len(6)) {
cell = rownames(res$beta)[i]
plot(res$beta[cell, ], restils$beta.granular[cell, ],
xlab = paste0(cell, " score under basic setting"),
ylab = paste0(cell, " score when tumor\ncells are modelled"),
pch = 16,
col = c(rgb(0,0,1,0.5), rgb(1,0,0,0.5))[1 + annot$istumor],
xlim = range(c(res$beta[cell, ], restils$beta.granular[cell, ])),
ylim = range(c(res$beta[cell, ], restils$beta.granular[cell, ])))
abline(0,1)
if (i == 1) {
legend("topleft", pch = 16, col = c(rgb(0,0,1,0.5), rgb(1,0,0,0.5)),
legend = c("microenv.", "tumor"))
}
}
So the impact of modelling tumor is two-fold:
The SpatialDecon package contains two specialized plotting functions, and a default color palette for the safeTME matrix.
The first function is “TIL_barplot”, which is just a convenient way of drawing barplots of cell type abundance.
# For reference, show the TILs color data object used by the plotting functions
# when safeTME has been used:
data("cellcols")
cellcols
#> CD4.T.cells CD8.T.cells Treg T.CD4.naive
#> "red" "firebrick" "#FF66FF" "#CC0000"
#> T.CD4.memory T.CD8.naive T.CD8.memory NK
#> "#FF0000" "#FF6633" "#FF9900" "grey10"
#> B B.naive B.memory plasma
#> "darkblue" "#000099" "#0000FF" "#3399CC"
#> pDC pDCs macrophages monocytes
#> "#00FFFF" "#00FFFF" "#006600" "#33CC00"
#> monocytes.C monocytes.NC.I mDCs neutrophils
#> "#66CC66" "#33CC00" "#00FF00" "#9966CC"
#> mast fibroblasts endothelial.cells tumor
#> "#FFFF00" "#999999" "#996633" "#333333"
# show just the TME segments, since that's where the immune cells are:
layout(mat = (matrix(c(1, 2), 1)), widths = c(7, 3))
TIL_barplot(restils$cell.counts$cell.counts, draw_legend = TRUE,
cex.names = 0.5)
# or the proportions of cells:
TIL_barplot(restils$prop_of_nontumor[, annot$AOI.name == "TME"],
draw_legend = TRUE, cex.names = 0.75)
The second function is “florets”, used for plotting cell abundances atop some 2-D projection. Here, we’ll plot cell abundances atop the first 2 principal components of the data:
# PCA of the normalized data:
pc = prcomp(t(log2(pmax(norm, 1))))$x[, c(1, 2)]
# run florets function:
par(mar = c(5,5,1,1))
layout(mat = (matrix(c(1, 2), 1)), widths = c(6, 2))
florets(x = pc[, 1], y = pc[, 2],
b = restils$beta, cex = 2,
xlab = "PC1", ylab = "PC2")
par(mar = c(0,0,0,0))
frame()
legend("center", fill = cellcols[rownames(restils$beta)],
legend = rownames(restils$beta), cex = 0.7)
So we can see that PC1 roughly tracks many vs. few immune cells, and PC2 tracks the relative abundance of lymphoid/myeloid populations.
The SpatialDecon library includes several helpful functions for further analysis/fine-tuning of deconvolution results.
When two cell types are too similar, the estimation of their abundances becomes unstable. However, their sum can still be estimated easily. The function “collapseCellTypes” takes a deconvolution results object and collapses any colsely-related cell types you tell it to:
matching = list()
matching$myeloid = c( "macrophages", "monocytes", "mDCs")
matching$T.NK = c("CD4.T.cells","CD8.T.cells", "Treg", "NK")
matching$B = c("B")
matching$mast = c("mast")
matching$neutrophils = c("neutrophils")
matching$stroma = c("endothelial.cells", "fibroblasts")
collapsed = collapseCellTypes(fit = restils,
matching = matching)
heatmap(collapsed$beta, cexRow = 0.85, cexCol = 0.75)
Sometimes a cell profile matrix will omit a cell type you know to be present in a tissue. If your data includes any regions that are purely this unmodelled cell type - e.g. because you’ve used the GeoMx platform’s segmentation capability to specifically select them - then you can infer a profile for that cell type and merge it with your cell profile matrix. The algorithm clusters all the observations you designate as purely the unmodelled cell type, and collapses those clusters into as many profiles of that cell type as you wish. For cancer cell, it may be appropriate to specify 10 or more clusters; for highly regular healthy cells, one cluster may suffice.
(Note: this functionality can also be run within the spatialdecon function, as is demonstrated further above.)
pure.tumor.ids = annot$AOI.name == "Tumor"
safeTME.with.tumor = mergeTumorIntoX(norm = norm,
bg = bg,
pure_tumor_ids = pure.tumor.ids,
X = safeTME,
K = 3)
heatmap(sweep(safeTME.with.tumor, 1, apply(safeTME.with.tumor, 1, max), "/"),
labRow = NA, margins = c(10, 5))
Once cell type abundance has been estimated, we can flip the deconvolution around, modelling the expression data as a function of cell abundances, and thereby deriving:
The function “reversedecon” runs this model.
rdecon = reverseDecon(norm = norm,
beta = res$beta)
str(rdecon)
#> List of 5
#> $ coefs : num [1:545, 1:19] 1.443 1.312 0 0.683 0.976 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:545] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:19] "(Intercept)" "macrophages" "mast" "B.naive" ...
#> $ yhat : num [1:545, 1:30] 17.47 2.44 32.39 1.11 2.86 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:545] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ resids : num [1:545, 1:30] -0.0237 -0.2567 -0.3155 0.2016 0.0978 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:545] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> .. ..$ : chr [1:30] "ROI10TME" "ROI10Tumor" "ROI11TME" "ROI11Tumor" ...
#> $ cors : Named num [1:545] 0.869 0.552 0.961 0.916 0.909 ...
#> ..- attr(*, "names")= chr [1:545] "A2M" "ABCB1" "ACP5" "ADAM12" ...
#> $ resid.sd: Named num [1:545] 0.364 0.233 0.386 0.33 0.196 ...
#> ..- attr(*, "names")= chr [1:545] "A2M" "ABCB1" "ACP5" "ADAM12" ...
# look at the residuals:
heatmap(pmax(pmin(rdecon$resids, 2), -2))
# look at the two metrics of goodness-of-fit:
plot(rdecon$cors, rdecon$resid.sd, col = 0)
showgenes = c("CXCL14", "LYZ", "NKG7")
text(rdecon$cors[setdiff(names(rdecon$cors), showgenes)],
rdecon$resid.sd[setdiff(names(rdecon$cors), showgenes)],
setdiff(names(rdecon$cors), showgenes), cex = 0.5)
text(rdecon$cors[showgenes], rdecon$resid.sd[showgenes],
showgenes, cex = 0.75, col = 2)
From the above plot, we can see that genes like CXCL14 vary independently of cell mixing, genes like LYZ are correlated with cell mixing but still have variable expression, and genes like NKG7 serve as nothing but obtuse readouts of cell mixing.
sessionInfo()
#> R version 4.2.1 (2022-06-23)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.5 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] sp_1.5-0 SeuratObject_4.1.2 SpatialDecon_1.8.0
#>
#> loaded via a namespace (and not attached):
#> [1] nlme_3.1-160 bitops_1.0-7 EnvStats_2.7.0
#> [4] RColorBrewer_1.1-3 httr_1.4.4 GenomeInfoDb_1.34.0
#> [7] numDeriv_2016.8-1.1 R.cache_0.16.0 tools_4.2.1
#> [10] bslib_0.4.0 utf8_1.2.2 R6_2.5.1
#> [13] vipor_0.4.5 rgeos_0.5-9 DBI_1.1.3
#> [16] BiocGenerics_0.44.0 colorspace_2.0-3 GGally_2.1.2
#> [19] tidyselect_1.2.0 repmis_0.5 logNormReg_0.5-0
#> [22] curl_4.3.3 compiler_4.2.1 progressr_0.11.0
#> [25] cli_3.4.1 Biobase_2.58.0 sass_0.4.2
#> [28] scales_1.2.1 systemfonts_1.0.4 stringr_1.4.1
#> [31] digest_0.6.30 minqa_1.2.5 rmarkdown_2.17
#> [34] R.utils_2.12.1 XVector_0.38.0 pkgconfig_2.0.3
#> [37] htmltools_0.5.3 lme4_1.1-31 parallelly_1.32.1
#> [40] highr_0.9 fastmap_1.1.0 htmlwidgets_1.5.4
#> [43] rlang_1.0.6 ggthemes_4.2.4 readxl_1.4.1
#> [46] jquerylib_0.1.4 generics_0.1.3 jsonlite_1.8.3
#> [49] dplyr_1.0.10 R.oo_1.25.0 RCurl_1.98-1.9
#> [52] magrittr_2.0.3 GenomeInfoDbData_1.2.9 GeomxTools_3.2.0
#> [55] Matrix_1.5-1 Rcpp_1.0.9 ggbeeswarm_0.6.0
#> [58] NanoStringNCTools_1.6.0 munsell_0.5.0 S4Vectors_0.36.0
#> [61] fansi_1.0.3 lifecycle_1.0.3 R.methodsS3_1.8.2
#> [64] stringi_1.7.8 yaml_2.3.6 MASS_7.3-58.1
#> [67] zlibbioc_1.44.0 plyr_1.8.7 grid_4.2.1
#> [70] parallel_4.2.1 listenv_0.8.0 crayon_1.5.2
#> [73] lattice_0.20-45 splines_4.2.1 Biostrings_2.66.0
#> [76] knitr_1.40 pillar_1.8.1 uuid_1.1-0
#> [79] boot_1.3-28 rjson_0.2.21 reshape2_1.4.4
#> [82] future.apply_1.9.1 codetools_0.2-18 stats4_4.2.1
#> [85] glue_1.6.2 ggiraph_0.8.3 evaluate_0.17
#> [88] data.table_1.14.4 nloptr_2.0.3 vctrs_0.5.0
#> [91] cellranger_1.1.0 gtable_0.3.1 purrr_0.3.5
#> [94] reshape_0.8.9 future_1.28.0 assertthat_0.2.1
#> [97] cachem_1.0.6 ggplot2_3.3.6 xfun_0.34
#> [100] tibble_3.1.8 pheatmap_1.0.12 lmerTest_3.1-3
#> [103] beeswarm_0.4.0 IRanges_2.32.0 globals_0.16.1