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1 Introduction

This manual introduces the epihet package and shows how the package can be used to calculate epigenetic hetero-

geneity of cells and visualize the results through various types of graphs. This package was designed to use output

from methclone, a C++ library that analyzes the evolution of epialleles using Bisulfite Sequencing methylation

data.

2 Installation

1. Download the package from Bioconductor.

if (!requireNamespace("BiocManager", quietly = TRUE))

install.packages("BiocManager")

BiocManager::install("epihet")

Or install the development version of the package from Github.

BiocManager::install("TheJacksonLaboratory/epihet")

2. Load the package into R session.

library(epihet)

3 Background

3.1 DNA Methylation & Epigenetic Heterogeneity

Methylation occurs on the DNA strand where a methyl group attaches to the cytosine of a bonded cytosine and

guanine pairing. Normal methylation patterns assure the proper regulation of gene expression and stable gene

silencing. Areas of DNA that have a high percentage of methylation are considered to be hypermethylated and

have been associated with the silencing of certain tumor-suppressor genes. Areas with lower percentages of

methylation are called hypomethylated and are associated with cell transformation.

Recently, cell-to-cell variations in cancer patients have been proposed to contribute to the treatment failure as

it may provide an alternative trajectory for the cancer cells to escape therapy. In addition to the genetic allelic

heterogeneity, it has been reported that cancer cells may display various epigenome status within the same patients.

Specifically, the epigenetic heterogeneity and dynamics measured by the phased DNA methylation patterns have

been reported to associate with clinical outcome in acute myeloid leukemia (AML), chronic lymphocytic leukemia

(CLL), diffuse large B cell lymphoma, and Ewing sarcoma (Sheffield et al, 2017). As the cancer cell evolves from
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diagnosis to relapse, methylation patterns at a given locus can further disrupt promoter regions and gene regulation

(Pan et al, 2015). These differing methylation patterns on the same locus/gene are called epialleles and are key

to determine epigenetic heterogeneity. Previous studies have shown that the methylation patterns of cancer cells

on relapse can vastly differ from the patterns of the same cells on diagnosis (Li et al, 2014). This package uses

epialleles consisting of four adjacent cytosine bases to create 16 (either a methylated or unmethylated cytosine

across four unique loci) distinct methylation patterns to analyze epigenetic heterogeneity in the samples.

3.2 Important Variables for Analysis

To determine epigenetic heterogeneity, epihet uses the following three variables: proportion of discordant reads

(PDR), epipolymorphism, and Shannon entropy values. By comparing the similarities and differences between

these values at the same locus across multiple samples, the extent of heterogeneity between the samples can be

analyzed by the user.

3.2.1 Proportion of Discordant Reads (PDR)

One important variable to analyze for heterogeneity between cells is the proportion of discordant reads (PDR).

PDR at each locus is defined as the proportion of discordant reads compared to the number of total reads from

that locus (Landau et al, 2014). A bisulfite sequencing read at a given locus is classified as a concordant read or a

discordant read. Here, a concordant read is one that shows fully unmethylated or fully methylated sites at a given

locus, such as a four methylated cytosines. A discordant read is one that shows varying states of methylated and

unmethylated regions at a given locus, such as a methylated cytosine followed by three unmethylated cytosines.

PDR values can then be used for analyzing epigenetic heterogeneity because a greater value for PDR corresponds

to a greater amount of discord within the sample. With a greater level of discord, the sample is considered to be

more heterogeneous in nature and could lead to adverse clinical outcomes upon treatment.

In this package, epihet calculates PDR value for each locus of one sample from the proportion of each methylation

pattern. For a given locus, epihet sums the percentage of reads support all discordant methylation patterns to

obtain PDR value. The resulting value is between 0 and 1.

3.2.2 Epipolymorphism

When analyzing epigenetic heterogeneity, epigenetic polymorphism, or epipolymorphism, is an important variable

to calculate. Epipolymorphism is defined as “the probability that two epialleles randomly sampled from the locus

differ from each other” (Landan et al, 2012). Calculating the epipolymorphism value for a given locus uses the

proportion of each methylation pattern to determine how likely the methylation patterns differ across multiple

reads. Epipolymorphism value ranges from 0 to 1 with larger values being associated with larger differences in

methylation patterns.

In this package, epipolymorphism value for each locus is calculated based on the formula described by Landen
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et al. (Landan et al, 2012). For each locus, the proportion of each methylation pattern is squared then summed

together and subtracted from 1. The resulting value is the epipolymorphism value for the given locus.

3.2.3 Shannon Entropy

An important aspect of epigenetic heterogeneity is knowing how diverse a given epiallele is compared to other

epialleles. This variable is best tracked through Shannon’s information entropy. To calculate Shannon entropy,

the proportion for each methylation pattern of a given sample must be known. Next, each proportion is multiplied

by the logarithmic result of that proportion. These products are summed together and the result is negated to find

the value for Shannon entropy. This result is equal to the exponential that corresponds to the “effective number”

of epialleles needed to generate an equivalent Shannon entropy value based on the given methylation pattern

proportions (Sherwin, 2010). A large value for Shannon entropy corresponds to a greater number of epiallele

patterns needed and would be considered more diverse and, therefore, more heterogeneous. A low value for

Shannon entropy corresponds to a lesser amount of epiallele patterns needed and be considered less heterogeneous

based on its epigenetics. A value of 0 for Shannon entropy shows that the locus only contains a single methylation

pattern across all the reads.

4 Building the Comparison Matrix

In order to prepare for analysis, epihet has built-in functions that take in multiple txt files for multiple samples

from the program methclone and transforms the data into a large matrix that contains the location information and

PDR, epipolymorphism, and Shannon entropy values for each locus that is shared between the inputted samples.

The following sections provide examples on how to use the functions in epihet to build the comparison matrix and

prepare the data for analysis.

To begin using epihet, the user should already have fed bisulfite sequencing data to methclone, which outputs

compressed text file containing epiallele patterns and the percentage of reads supporting each of epiallele patterns

at the genomic locus in the sample. Included in epihet are example files used for the sample code in this vignette,

which include only the result for epialleles on chromosome 22 for two normal samples (N1, N2) and two AML

patients with the CEBPA sil (isocitrate dehydrogenase 2) mutation (D2238, D2668). The following lines of code

can be run to obtain the files and their corresponding ID names:

files = c(system.file("extdata","D-2238.chr22.region.methClone_out.gz",package = "epihet"),

system.file("extdata","D-2668.chr22.region.methClone_out.gz",package = "epihet"),

system.file("extdata","N-1.chr22.region.methClone_out.gz",package = "epihet"),

system.file("extdata","N-2.chr22.region.methClone_out.gz",package = "epihet"))

ids = epihet::splitn(basename(files),"[.]",1)
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##

4.1 Creating a List of GenomicRanges Objects

To use epihet to calculate epigenetic heterogeneity, users need to assign the compressed text file suffix to meth-

Clone out.gz. Then, makeGR function in epihet reads in the compressed text files and creates a GenomicRanges

object for each file. The GenomicRanges objects are returned in a list. The makeGR function is the first step for

epihet’s pipeline as the result is needed for input in the comparison matrix function, compMatrix. The function

takes a vector of file paths, ’files’, and a vector of sample names that corresponds to the files, ’ids’. The following

code creates a list of GenomicRanges objects using epihet’s sample files:

GR.List = epihet::makeGR(files = files, ids = ids,

cores = 1, sve = FALSE)

One row in each GenomicRanges object in the list contains the information of one locus, including chromosome

number, range of the strand, and strand type, as well as six additional columns that include the locus ID, number

of reads, average methylation percentage of the locus, and PDR, epipolymorphism, and Shannon entropy values

of the locus. If makeGR is being used to process many files, the variable ’cores’ can be changed to specify the

number of cores to use for parallel execution. If the resulting GenomicRanges list must be saved for later use, the

variable ’sve’ can be set to TRUE and the result will be saved to a .rda file.

4.2 Generating Comparison Matrix

The list of GenomicRanges objects can be used to generate the comparison matrix that is used for the analysis

functions included in epihet. The comparison matrix is created using the ’compMatrix’ function which locates

epialleles that are shared by at least a certain percentage of the samples and organizing the data into sections for

read number, average methylation levels, PDR, epipolymorphism, and Shannon entropy values at these matching

loci. The following code creates a comparison matrix from the GenomicRanges list created in the previous section

and finds epialleles that are present in 100% of the samples (p = 1):

comp.Matrix = epihet::compMatrix(epi.gr = GR.List, outprefix = NULL,

readNumber = 60, p = 1,

cores = 1, sve = FALSE)

The parameter ’p’ takes values from 0 to 1. The comparison matrix comp.Matrix contains epigenetic heterogene-

ity values of the locus shared by at least 100p percent of samples. For example, if the loci in comp.Matrix are to

be shared by at least half of the samples, then ’p’ should be set to 0.50. If the resulting comparison matrix needs

to be saved, ’sve’ can be set to TRUE and ’outprefix’ can be specified to add a prefix to the resulting .rda file. If
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large files are being used, the matrix can be created using multiple cores to speed up the execution as specified by

the ’cores’ variable.

Additionally, the users can add other epigenetic heterogeneity metrics they develop or interest in this step. If

there are multiple customized metrics, all the analysis will be performed one measurement one time. Firstly, the

customized metrics on all the loci for one sample are saved as an element of a list. The example data ’myValues’

are provided by epihet. Here we denoted the customized metrics as myValues. Then, we added the myValues into

the metadata of the GRanges object from GR.List sample by sample. Finally, the users can get the comparison

matrix including the customized metrics through setting the argument ’metrics’ to a vector including value ’my-

Values’. When the comparison matrix is generated, the users can also perform other downstream analysis using

the customized metrics through setting the argument ’value’ to ’myValues’.

data(myValues,package = "epihet")

myGR.List<-list()

for (n in names(GR.List)) {

tmp<-GR.List[[n]]

tmp$values.myValues<-myValues[[n]]

myGR.List[[n]]<-tmp

}

mycomp.Matrix = epihet::compMatrix(epi.gr = myGR.List, outprefix = NULL,

readNumber = 60, p = 1,

metrics = c("read1","meth1", "pdr", "epipoly",

"shannon","myValues"),

cores = 1, sve = FALSE)

4.3 Creating Single GenomicRanges Object

Instead of creating a list of GenomicRanges objects, a single GenomicRanges object can be created using the

’readGR’ function. The function takes a vector of files, ’files’, and a vector of IDs, ’ids’, that corresponds to the

files. The index of the file, ’n’, to be used for creating the GenomicRanges object is also needed. The following

code generates the GenomicRanges object for the third file in the vector:

GR.Object = epihet::readGR(files = files, ids = ids, n = 3)

4.4 Simple Summary for Two Samples

If only a quick comparison is needed between two samples, epihet’s summarize function can be used to provide

a simple overview of how the values of one sample correlate to the values of another sample. The summarize
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function works by taking in two GenomicRanges objects and the values of each object that will be compared. The

possible values for the summarize function are ’pdr’, ’epipoly’, and ’shannon’ that correspond to the data values

of the same name. Two different cutoffs specify read coverage of a locus which is included in the summary. The

output of summarize is a dataframe that contains the mean of the first and second value of common loci between

the two samples with a number of reads greater than both cutoffs. The correlation between value one and value

two at these loci are also calculated as well as the number of common loci at both read cutoffs. The following

code generates a summary of PDR and epipolymorphism values for the first and second sample (D2238, D2668)

in the GR.List created earlier with read coverage cutoffs of 10 and 60:

summary = epihet::summarize(gr1 = GR.List[[1]], gr2 = GR.List[[2]],

value1 = 'pdr', value2 = 'epipoly',

cutoff1 = 10, cutoff2 = 60)

The result of this code shows that the PDR and epipolymorphism values have a high positive correlation at both

cutoffs.

5 Analyzing the Data

Once the comparison matrix has been generated for the sample data, the epigenetic heterogeneity can be analyzed

by using epihet’s built-in analysis functions. With epihet, the data in the comparison matrix can be used to create

boxplots, heat maps, and PCA, t-SNE, and MA plots. For most of the functions used for analysis in epihet,

annotation information can be added as a parameter that will annotate or group the data based on the cancer type

or subtype information provided by the user. The annotation information must be a dataframe with row names as

the samples, data entries as the corresponding group annotations. For our example, the subtype groupings for the

samples will be used as annotations and can be created by the following code:

subtype = data.frame(Type= c(rep('CEBPA_sil', 2), rep('Normal', 2)),

row.names = names(GR.List),stringsAsFactors = FALSE)

5.1 Creating Boxplots

A simple way to analyze how data is distributed across samples are comparative boxplot. By creating boxplot,

one can easily analyze the spread, median, range, and find any potential outliers in the data. The boxplot function

in epihet, called epiBox, is used to create a boxplot of a specific value, such as ’pdr’, ’epipoly’, or ’shannon’, for

each grouping of samples as inputted by the user. The following call to epiBox compares epipolymorphism values

across the samples and creates the figure seen below:

7



epihet::epiBox(compare.matrix = comp.Matrix, value = 'epipoly',

type = subtype, box.colors = NULL, add.points = FALSE,

points.colors = NULL, pdf.height = 4, pdf.width = 4,

sve = TRUE)
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Figure 1: Boxplot of CEBPA sil and Normal samples by epipolymorphism value.

As the figure 1 shows, the CEBPA sil mutation samples have a range in epipolymorphism values ranging from

0.08 to 0.55, while the normal samples have a very small range with all average epipolymorphism values being

around 0.78. The figure also shows a relatively large difference between the median epipolymorphism values

between the two subtypes with CEBPA sil mutation at 0.3133 and normal at 0.7833.

Some other important features of the epiBox function are adding the individual data points for each sample to

the boxplots through the ’add.points’ parameter, customizing colors of both the boxes and points by adding a

vector of colors to both ’box.colors’ and ’points.colors’, and saving the resulting figure as a .pdf file using ’sve’,

’pdf.height’, and ’pdf.width’.

5.2 Generating a Heat Map

We can cluster the samples based on the epigenetic heterogeneity using the most variable genetic loci. The function

epiMap uses pheatmap function (default value) to create a heatmap plot based the top user-inputted percent of

loci with the highest standard deviation across all samples. In the example, the function uses epipolymorphism

values to cluster the sample based on all the loci. The user can create the appropriate input for the parameter

annotate.colors to color the samples by subtype information:
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pmap = epihet::epiMap(compare.matrix = comp.Matrix,

value = 'epipoly',annotate = subtype,

clustering_distance_rows = "euclidean",

clustering_distance_cols = "euclidean",

clustering_method = "complete",annotate.colors = NA,

color= colorRampPalette(c("blue","white","red"))(1000),

loci.percent = 1, show.rows = FALSE,

show.columns = TRUE, font.size = 15,

pdf.height = 10, pdf.width = 10, sve = TRUE)
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Figure 2: Heatmap of CEBPA sil and Normal samples by epipolymorphism value.

Other features of epiMap include customizing the size of the font in the image through ’font.size’, showing row or

column names using ’show.rows’ and ’show.columns’, and the ability to save the image as a .pdf file through ’sve’,

’pdf.height’, and ’pdf.width’. The colors of the annotations can also be customized by creating a vector of colors

and storing them in a list. The following code creates the appropriate input for the ’annotate.colors’ parameter to

color CEBPA sil mutation samples in orange and normal samples in forestgreen:

box.colors=c("orange","forestgreen")

names(box.colors)=c("CEBPA_sil","Normal")

annotate.colors = list(Type=box.colors)
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5.3 Graphing a PCA Plot

An important analysis for epigenetic heterogeneity is examining how the investigated samples are grouped based

on PDR, epipolymorphism, and Shannon entropy values. This can be accomplished through a principle component

analysis (PCA) plot for the comparison matrix. A PCA plot uses an orthogonal transformation to change the data

values in the matrix to coordinates based on variance. The epiPCA function creates a PCA plot for either PDR,

epipolymorphism, or Shannon entropy values and colors the points by an inputted annotation. The following code

creates the PCA plot seen below for epipolymorphism values and colors the points on the plot based on subtype

groupings:

suppressPackageStartupMessages(library(ggfortify))

epihet::epiPCA(compare.matrix = comp.Matrix, value = 'epipoly',

type = subtype, points.colors = NULL,

frames = FALSE, frames.colors = NULL,

probability = FALSE, pdf.height = 4,

pdf.width = 5, sve = TRUE)
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Figure 3: PCA Plot of CEBPA sil and Normal samples by epipolymorphism value.

The PCA plot shows CEBPA sil and normal samples can separate each other very well.

Other features of epiPCA include adding frames or probability ellipses to better define the groupings of annotations

with ’frames’ or ’probability’, customizing the colors of the points and frames by adding a vector of colors to

’points.colors’ and ’frames.colors’, and saving the plot as a .pdf file using ’sve’, ’pdf.height’, and ’pdf.width’.
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5.4 Graphing a t-SNE Plot

Another plot used to analyze how the samples are group based on a given value is a t-distributed stochastic

neighbor embedding (t-SNE) plot. Similar to a PCA plot, a t-SNE plot is used for analyzing patterns in data

by grouping points together, however, a t-SNE plot uses multiple dimensions for these groupings. The results are

placed on a human-readable plot in 2-dimensions. The function in epihet used for t-SNE plot creation is epiTSNE.

By using either PDR, epipolymorphism, or Shannon entropy values, epiTSNE can create a t-SNE plot and color

them by an inputted annotation. The following code creates the t-SNE plot below using epipolymorphism values

and colors the points based on their subtype information:

set.seed(42)

epihet::epiTSNE(compare.matrix = comp.Matrix, value = 'epipoly',

type = subtype, points.colors = NULL, theta = 0.5,

perplexity = 1, max_iter = 1000, pdf.height = 4,

pdf.width = 5, sve = TRUE)
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Figure 4: t-SNE Plot of CEBPA sil and Normal samples.

The t-SNE plot shows the CEBPA sil and normal samples cluster two different groups. As these two groups are

at opposite ends of the t-SNE plot, one can assume that the epipolymorphism values for the CEBPA sil mutation

samples differ widely in comparison to the normal samples. This corresponds to a large difference in the number

of methylation patterns found in the two subtypes.

Other features of epiTSNE include customizing the colors of the points by adding a vector of colors to ’points.colors’,

customizing the parameters of the Rtsne function used to generate the data for the t-SNE plot through ’theta’,

’perplexity’, and ’max iter’, and the option to save the resulting plot as a .pdf file using ’sve’, ’pdf.height’, and
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’pdf.width’.

5.5 Identifying Differential Epigenetic Heterogeneity locus

The diffHet functions is the main function to identify differential epigenetic heterogeneity (DEH) locus. Depend-

ing on the measures of epigenetic heterogeneity user investigates, it will either use t-test or permutation test to

calculate p-values. p-values will be adjusted using multiple test correction. When you identify the loci with dif-

ferential PDR or epipolymorphism comparing test versus control samples, the function will use t-test. Otherwise,

the function will employ EntropyExplorer R package to perform the permutation test. And the function also re-

turns the mean epigenetic heterogeneity for each group and the mean epigenetic heterogeneity difference between

test and control samples. The users can use the mean epigenetic heterogeneity difference and adjusted p-values

to identify DEH loci. The following code creates the dataframe for all the loci containing differential epipoly-

morphism between normal and CEBPA sil mutation samples for epipolymorphism values with a heterogeneity

difference cutoff of 0.20:

samples=data.frame(Sample=colnames(comp.Matrix)[1:(length(comp.Matrix)-2)],

Genotype=c(rep ("CEBPA_sil", 2), rep ("Normal", 2)),

stringsAsFactors = FALSE)

rownames(samples)=samples$Sample

seed = sample(1:1e+06, 1)

set.seed(seed)

diff.het.matrix = epihet::diffHet(compare.matrix = comp.Matrix,

value = 'epipoly', group1 = 'CEBPA_sil',

group2 = 'Normal', subtype = samples,

het.dif.cutoff = 0.20,

permutations = 1000,

p.adjust.method = 'fdr', cores = 1)

## [1] "using t-test to identify DEH loci"

## [1] "Finish p value calculation"

After calculating the heterogeneity difference and adjusted p-value for each locus, an MA plot can be created. For

each locus, the average of the means heterogeneity for two groups versus the heterogeneity difference was plotted.

DEH loci (adjusted p-values lower than the inputted cutoff) are highlighted in red. The following code creates the

MA plot below using the heterogeneity difference cutoff of 0.2 and an adjusted p-value cutoff of 0.05:

12



data(diffhetmatrix,package="epihet")

epihet::epiMA(pval.matrix = diffhetmatrix, padjust.cutoff = 0.05,

pch = 19, sve = TRUE,pointsize=1.5)
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Figure 5: MA Plot of CEBPA sil and Normal samples. Red dots represent DEH loci. Gray dots indicate non-DEH
loci.

Through analysis of the MA plot, we can clearly see the distribution of the DEH loci. The red points with the

negative heterogeneity difference values are decrease DEH loci. The red points with the positive heterogeneity

difference values are increase DEH loci.

Other features of the diffHet function include specifying a cutoff for the heterogeneity difference through ’het.dif.cutoff’,

changing the method used to calculate adjusted p-values using ’p.adjust.method’, and the ability to use multiple

cores for parallel execution using ’cores’. If Shannon entropy values are to be examined, diffHet uses the Entropy-

Explorer function to calculate the appropriate p-value for each locus. The variable for permutations in Entropy-

Explorer can be modified using ’permutations’.

Other features for epiMA include specifying the adjusted p-value cutoff to find significant values using ’pad-

just.cutoff’, changing the individual point designs for the plot using ’pch’, and the ability to save the plot as a .pdf

file using ’sve’.
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6 Constructing co-epigenetic heterogeneity network

6.1 Network construction and module identification

We can construct co-epigenetic heterogeneity network based on the DEH loci using WGCNA R package. For

algorithm details, please refer to the tutorial of WGCNA. Here, there are two methods to construct network,

which were decided by the parameter node.type. One method calculates the co-epigenetic heterogeneity between

any two DEH loci. Another one is to identify genes with genome region annotated by DEH loci and calculates the

co-epigenetic heterogeneity between any two genes. Genome region can be promoter, CpG islands, CpG shores

and so on. The epigenetic heterogeneity of one gene was measured with the average epigenetic heterogeneity of

loci associated with the gene. At this case, annotation files in BED format are need for annotating your DEH

loci. You can download annotation from UCSC table browser for your genome of interest. Then you should save

the BED file as the GRanges object in R, and input it into the parameter annotation.obj. We also provide gene

promoter files for Refseq genes. Additionally, users can also supply the clinical traits of patients in dataframe

to the parameter datTraits, such as age, gender, survival time, to identify clinically significant modules. Then

network can be obtained as follows:

suppressPackageStartupMessages(library(GenomicRanges))

suppressPackageStartupMessages(library(doParallel))

registerDoParallel(cores=1)

data(sharedmatrix,package="epihet")

data(DEH,package = "epihet")

data(datTraits,package = "epihet")

data(promoter,package = "epihet")

classes=data.frame(Sample=

c(colnames(sharedmatrix)[1:(length(sharedmatrix)-2)],

paste("N",1:14,sep = "-")),group=c(rep("CEBPA_sil",6),

rep("Normal",14)),stringsAsFactors = FALSE)

rownames(classes)=classes$Sample

epi.network=epihet::epiNetwork(node.type = "gene",DEH,sharedmatrix,

value = "epipoly",group="CEBPA_sil",

subtype=classes,datTraits = datTraits,

promoter,networktype = "signed",

method = "pearson",prefix="epipoly",

mergeCutHeight = 0.25,minModuleSize = 30)

This function is used to generate the co-epigenetic heterogeneity network and modules. It will return a list contain-
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Figure 6: Clustering dendrogram of genes.
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ing epigenetic heterogeneity matrix of patients, module information and genes of each module. At the same time,

the function saves Topological Overlap Matrices(TOM) as RData format. And, it creates a clustering dendrogram

of loci/genes showing module information through assigning different colors.

When users provided the external clinical traits, the clinically significant modules were identified. The result was

visualized by the heatmap plot in the Figure 7. Each row in the table corresponds to a module, and each column

to a trait. Numbers in the table report the correlations of the corresponding module eigengenes and traits, with the

p values printed below the correlations in parentheses. The color legend denotes correlation.

The function also creates a bar plot showing the number of genes associated with DEH loci in each module in

Figure 8.
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Figure 7: Heatmap showing the relationship between module eigengenes and clinical traits.

6.2 Module Visualization

We can also visualize the modules and perform the network topology analysis using the following function.

load("epipoly-block.1.RData")

module.topology=epihet::moduleVisual(TOM,

value.matrix=epi.network$epimatrix,

moduleColors=epi.network$module$color,

mymodule="turquoise",cutoff=0.02,

prefix='CEBPA_sil_epipoly',sve = TRUE)
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Figure 8: The bar plot showing the number of genes in each module.
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Figure 9: The lightgreen module.

Here, TOM file is loaded into R workspace, which was created by the above function epiNetwork. This function

can also generate an edge file and a node file as the txt format. Users can specify network layout and style using

Cytoscape.
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6.3 Module Annotation

The epihet package contains a function to perform pathway enrichment analysis using a simple, single step. To

run the function, ReactomePA needs to be installed before running the code. Here, ReactomePA needs entrez ID,

so we firstly transform refseq ID to entrez ID using function bitr() in R package clusterProfiler.

suppressPackageStartupMessages(library(clusterProfiler))

gene=unique(epi.network$module$gene)

entrez=bitr(gene,fromType = "REFSEQ",toType = "ENTREZID",

OrgDb = "org.Hs.eg.db")

genelist=epi.network$module

head(genelist)

genelist=merge(genelist,entrez,by.x="gene",by.y="REFSEQ")

genelist=unique(genelist[,c(4,2,3)])

head(genelist)

pathway = epihet::epiPathway(genelist,cutoff = 0.05,showCategory=8,

prefix="CEBPA_sil",pdf.height = 10,

pdf.width = 10)
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Figure 10: Bar plot of pathway enrichment results.

The function returns a list, one element is a dataframe containing pathways annotated by genes of one module.
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Bar plot describes adjusted p-values and gene count as bar color and height respectively.

Furthermore, in this analysis we would like to investigate modules that are associated with transcription variance in

cancer compared to normal samples. So we identify the modules significantly enriched by differentially expressed

genes (DEGs)

data(DEG,package = "epihet")

data(background,package = "epihet")

module.annotation=epihet::moduleAnno(DEG$refseq,background$gene,

module.gene=epi.network$module,

cutoff=0.1,adjust.method = "fdr",

prefix='epipoly',pdf.height = 5,

pdf.width = 5, sve = TRUE)
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Figure 11: Scatter plot showing the modules enriched by DEGs. x-axis is the number of genes in the module.
y-axis is the -log10(adjusted p-value). p-value is obtained from hypergeometric test. The label is the number of
DEGs in the module.

6.4 Module comparison

Finally, we compare the similarity between modules using the Jaccard similarity score for different cancers or

different subtypes of one cancer.

data(modulesil,package = "epihet")

data(moduledm,package = "epihet")

sim.score=epihet::moduleSim(module.subtype1=modulesil,

module.subtype2=moduledm,
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pdf.height = 3,pdf.width = 3,

sve = TRUE)

Here, you just need to input TOM files of the two cancer types or subtypes you interested. This function returns a

matrix showing the Jaccard similarity score between any two modules from different cancers or different subtypes

of one cancer and a heatmap plot to visualization.
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Figure 12: Heatmap plot showing the Jaccard score between any two modules from cancer types/subtypes you
interested.
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7 SessionInfo

sessionInfo()

## R version 4.2.0 Patched (2022-04-24 r82246 ucrt)

## Platform: x86_64-w64-mingw32/x64 (64-bit)

## Running under: Windows Server x64 (build 20348)

##

## Matrix products: default

##

## locale:

## [1] LC_COLLATE=C

## [2] LC_CTYPE=English_United States.utf8

## [3] LC_MONETARY=English_United States.utf8

## [4] LC_NUMERIC=C

## [5] LC_TIME=English_United States.utf8

##

## attached base packages:

## [1] parallel stats4 stats graphics grDevices utils datasets

## [8] methods base

##

## other attached packages:

## [1] org.Hs.eg.db_3.15.0 AnnotationDbi_1.59.0 Biobase_2.57.0

## [4] clusterProfiler_4.5.0 doParallel_1.0.17 iterators_1.0.14

## [7] foreach_1.5.2 GenomicRanges_1.49.0 GenomeInfoDb_1.33.1

## [10] IRanges_2.31.0 S4Vectors_0.35.0 BiocGenerics_0.43.0

## [13] ggfortify_0.4.14 ggplot2_3.3.6 knitr_1.39

##

## loaded via a namespace (and not attached):

## [1] shadowtext_0.1.2 backports_1.4.1 Hmisc_4.7-0

## [4] fastmatch_1.1-3 systemfonts_1.0.4 epihet_1.13.0

## [7] plyr_1.8.7 igraph_1.3.1 lazyeval_0.2.2

## [10] splines_4.2.0 BiocParallel_1.31.0 digest_0.6.29

## [13] yulab.utils_0.0.4 htmltools_0.5.2 GOSemSim_2.23.0

## [16] viridis_0.6.2 GO.db_3.15.0 fansi_1.0.3

## [19] magrittr_2.0.3 checkmate_2.1.0 memoise_2.0.1
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## [22] cluster_2.1.3 fastcluster_1.2.3 Biostrings_2.65.0

## [25] graphlayouts_0.8.0 matrixStats_0.62.0 enrichplot_1.17.0

## [28] jpeg_0.1-9 colorspace_2.0-3 blob_1.2.3

## [31] rappdirs_0.3.3 ggrepel_0.9.1 textshaping_0.3.6

## [34] xfun_0.30 dplyr_1.0.9 crayon_1.5.1

## [37] RCurl_1.98-1.6 jsonlite_1.8.0 graph_1.75.0

## [40] scatterpie_0.1.7 impute_1.71.0 survival_3.3-1

## [43] ape_5.6-2 glue_1.6.2 polyclip_1.10-0

## [46] gtable_0.3.0 zlibbioc_1.43.0 XVector_0.37.0

## [49] graphite_1.43.0 scales_1.2.0 DOSE_3.23.0

## [52] pheatmap_1.0.12 DBI_1.1.2 Rcpp_1.0.8.3

## [55] viridisLite_0.4.0 htmlTable_2.4.0 gridGraphics_0.5-1

## [58] tidytree_0.3.9 foreign_0.8-82 bit_4.0.4

## [61] reactome.db_1.79.0 preprocessCore_1.59.0 Formula_1.2-4

## [64] htmlwidgets_1.5.4 httr_1.4.3 fgsea_1.23.0

## [67] RColorBrewer_1.1-3 ellipsis_0.3.2 pkgconfig_2.0.3

## [70] farver_2.1.0 nnet_7.3-17 utf8_1.2.2

## [73] dynamicTreeCut_1.63-1 labeling_0.4.2 ggplotify_0.1.0

## [76] tidyselect_1.1.2 rlang_1.0.2 reshape2_1.4.4

## [79] munsell_0.5.0 tools_4.2.0 cachem_1.0.6

## [82] downloader_0.4 cli_3.3.0 generics_0.1.2

## [85] RSQLite_2.2.13 evaluate_0.15 stringr_1.4.0

## [88] fastmap_1.1.0 ragg_1.2.2 ggtree_3.5.0

## [91] bit64_4.0.5 tidygraph_1.2.1 purrr_0.3.4

## [94] KEGGREST_1.37.0 ggraph_2.0.5 ReactomePA_1.41.0

## [97] nlme_3.1-157 aplot_0.1.3 DO.db_2.9

## [100] rstudioapi_0.13 compiler_4.2.0 png_0.1-7

## [103] treeio_1.21.0 tibble_3.1.7 tweenr_1.0.2

## [106] stringi_1.7.6 highr_0.9 lattice_0.20-45

## [109] Matrix_1.4-1 vctrs_0.4.1 pillar_1.7.0

## [112] lifecycle_1.0.1 data.table_1.14.2 bitops_1.0-7

## [115] patchwork_1.1.1 qvalue_2.29.0 R6_2.5.1

## [118] latticeExtra_0.6-29 gridExtra_2.3 codetools_0.2-18

## [121] MASS_7.3-57 assertthat_0.2.1 withr_2.5.0

## [124] EntropyExplorer_1.1 GenomeInfoDbData_1.2.8 grid_4.2.0
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## [127] rpart_4.1.16 ggfun_0.0.6 tidyr_1.2.0

## [130] Rtsne_0.16 ggforce_0.3.3 WGCNA_1.71

## [133] base64enc_0.1-3
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