
CrispRVariants User Guide

Helen Lindsay, Mark Robinson

1 November 2022

Package

CrispRVariants 1.26.0

Contents

1 Introduction . 2

2 Quickstart . 2

3 Case study: Analysis of ptena mutant spectrum in zebrafish . . 4

3.1 Convert AB1-format Sanger sequences to FASTQ 4

3.2 Map the FASTQ reads . 5

3.3 List the BAM files . 5

3.4 Create the target location and reference sequence. 6

3.5 Creating a CrisprSet . 7

3.6 Creating summary plots of variants 8

3.7 Calculating the mutation efficiency 9

3.8 Get consensus alleles . 11

3.9 Plot chimeric alignments . 11

4 Choosing the strand for display 12

5 Multiple guides . 13

6 Changing the appearance of plots 15

6.1 Filtering data in plotVariants. 15

6.2 plotAlignments . 18

6.3 plotFreqHeatmap . 24

6.4 barplotAlleleFreqs . 28

7 Using CrispRVariants plotting functions independently 32

7.1 Plot the reference sequence 32

8 Note about handling of large deletions 32

CrispRVariants User Guide

1 Introduction
The CRISPR-Cas9 system is an efficient method of introducing mutations into genomic DNA.
A guide RNA directs nuclease activity to an approximately 20 nucleotide target region, resulting
in efficient mutagenesis. Repair of the cleaved DNA can introduce insertions and deletions
centred around the cleavage site. Once the target sequence is mutated, the guide RNA will no
longer bind and the DNA will not be cleaved again. SNPs within the target region, depending
on their location, may also disrupt cleavage. The efficiency of a CRISPR-Cas9 experiment is
typically measured by amplifying and sequencing the region surrounding the target sequence,
then counting the number of sequenced reads that have insertions and deletions at the target
site. The CrispRVariants package formalizes this process and takes care of various details of
managing and manipulating data for such confirmatory and exploratory experiments.
This guide shows an example illustrating how raw data is preprocessed and mapped and
how mutation information is extracted relative to the reference sequence. The package
comprehensively summarizes and plots the spectrum of variants introduced by CRISPR-Cas9
or similar genome editing experiments.

2 Quickstart
This section is intended for people familiar with mapping reads and working with core
Bioconductor classes. See the case study in the next section for a complete step-by-step
analysis.
The CrisprSet class stores aligned reads which have been trimmed to a target region along
with annotations of where insertion and deletions are located with respect to a specified
location. CrisprSet objects are created using the functions readsToTarget (for a single
target region) and readsToTargets (for multiple target locations). The following objects are
needed to create a CrisprSet for a single guide sequence. For multiple guides, the equivalent
parameters to target and reference are named targets and references respectively.

• reads - may be a vector of bam filenames, a GAlignments object or a GAlignmentsList

object. Bam files are assumed to represent individual experimental samples (possibly
containing reads from more than one guide). If the bam files contain multiplexed reads
that should be separated into groups, first read the alignments into R, separate as
required and then provide the separated alignments to readsToTarget. (See package
GenomicAlignments for more details about GAlignments and GAlignmentsList objects).

• target - A GRanges object indicating the genomic range to analyse. The sequence name
and coordinates should match regions found in the bam file(s). For readsToTarget,
the target must contain a single range. The target range can be found by searching
BLAST or BLAT for the guide sequence and extending the found range if desired -
be careful that the genome used by BLAST matches the genome used for mapping!
Alternatively, the target region can be found by mapping the guide sequence to the
genome or amplicon reference with a short read aligner (we typically use bwa fastmap);
or if reference sequence is not too large by reading the reference sequence into R
and using gregexpr to search the reference for the guide sequence. (See package
GenomicRanges for more details about GRanges objects).

2

https://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://genome.ucsc.edu/FAQ/FAQblat.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

CrispRVariants User Guide

• reference - A DNAString object, containing the reference sequence at the target loca-
tion. This can be fetched from the genome using the command line tool samtools
faidx or from within R using the Bioconductor package RSamtools; fetched from a
BSgenome object using Biostrings::getSeq; or reconstructed from a bam file using
the CrispRVariants function refFromAlns providing the bam file has an MD tag. (See
package Biostrings for more details about DNAString objects).

• target.loc This is the base that should be considered base zero, with respect to the
target. For example, if using a 23 nucleotide guide + PAM sequence as the reference,
the target.loc would be 17, meaning that bases 17 and 18 are numbered -1 and 1
respectively. If considering the 23bp guide region plus 10 bases on both sides, the
target.loc would be 27.

Other important readsToTarget parameters:
• If the bam file contains paired end data, set collapse.pairs = TRUE so that each read

pair is only counted once.
• By default CrispRVariants is conservative when dealing with large gaps, and requires

one mapped endpoint to be within 5 bases of the target.loc. To change this, increase
the value of the parameter chimera.to.target, e.g. chimera.to.target = 200

• If the parameter names is set, the sample names will be used when plotting.
• If using readsToTargets, providing primer.ranges (amplicon ranges) as well as targets

will help CrispRVariants disambiguate reads from nearby guide sequences.
• By default, CrispRVariants displays the variant alleles with respect to the strand of

the target. To change this behaviour, set orientation = "positive" to always display
with respect to the plus strand or orientation = "opposite" to display the opposite
strand to the target.

• Long gaps are typically mapped in separate segments. These are called chimeric
mappings. In this release CrispRVariants introduces an experimental parameter chimeras
= "merge", which reconstructs a linear alignment for the simplest case of two aligned
regions separated by a large gap with at most 10 bases multi-mapped to both segments.
Setting chimeras = "merge" means that these simple, “long-gap” chimeras can be
counted and displayed separately from more complex chimeric reads. However, be aware
that the exact endpoints of the gaps may be ambiguous and we do not at present have
a method for indicating ambiguous mapping.

• If considering a large region, e.g. the entire amplicon, use the minoverlap parameter to
set the minimum number of aligned positions overlapping the target required for a read
to be counted. For example, minoverlap = 10 means that reads with an aligned range
spanning at least 10 bases of the target will be counted.

Assuming the above parameters are defined, the following code will set up a CrisprSet object
and plot the variants:
crispr_set <- readsToTarget(reads, target = target, reference = reference,

target.loc = target.loc)

plotVariants(crispr_set)

or use plotVariants(crispr_set, txdb) to additionally show the target

location with respect to the transcripts if a Transcript Database

txdb is available

3

http://bioconductor.org/packages/release/bioc/html/Biostrings.html

CrispRVariants User Guide

3 Case study: Analysis of ptena mutant spectrum in
zebrafish
The data used in this case study is from the Mosimann laboratory, UZH.

3.1 Convert AB1-format Sanger sequences to FASTQ
This data set is from 5 separate clutches of fish (1 control - uninjected, 2 injected with strong
phenotype, 2 injected with mild phenotype), with injections from a guide against the ptena
gene. For this exercise, the raw data comes as AB1 (Sanger) format. To convert AB1 files to
FASTQ, we use ab1ToFastq(), which is a wrapper for functions in the “sangerseqR” package
with additional quality score trimming.
Although there are many ways to organize such a project, we organize the data (raw and
processed) data into a set of directories, with a directory for each type of data (e.g., ‘ab1’ for
AB1 files, ‘fastq’ for FASTQ files, ‘bam’ for BAM files, etc.); this can continue with directories
for scripts, for figures, and so on. With this structure in place, the following code sets up
various directories.
library(CrispRVariants)

library(sangerseqR)

List AB1 filenames, get sequence names, make names for the fastq files

Note that we only include one ab1 file with CrispRVariants because

of space constraints. All bam files are included

data_dir <- system.file(package="CrispRVariants", "extdata/ab1/ptena")

fq_dir <- tempdir()

ab1_fnames <- dir(data_dir, "ab1$", recursive=TRUE, full=TRUE)

sq_nms <- gsub(".ab1","",basename(ab1_fnames))

Replace spaces and slashes in filename with underscores

fq_fnames <- paste0(gsub("[\ |\\/]", "_", dirname(ab1_fnames)), ".fastq")

abifToFastq to read AB1 files and write to FASTQ

dummy <- mapply(function(u,v,w) {

abifToFastq(u,v,file.path(fq_dir,w))

}, sq_nms, ab1_fnames, fq_fnames)

We will collect sequences from each embryo into the same FASTQ file. Note that abifToFastq
appends output to existing files where possible. In this example, there is only 1 sequence,
which will be output to 1 file:
length(unique(ab1_fnames))

[1] 1

length(unique(fq_fnames))

[1] 1

Some of the AB1 files may not have a sufficient number of bases after quality score trimming
(default is 20 bases). In these cases, abifToFastq() issues a warning (suppressed here).

4

CrispRVariants User Guide

3.2 Map the FASTQ reads
We use FASTQ format because it is the major format used by most genome alignment
algorithms. At this stage, the alignment could be done outside of R (e.g., using command line
tools), but below we use R and a call to system() to keep the whole workflow within R. Note
that this also requires various software tools (e.g., bwa, samtools) to already be installed.
The code below iterates through all the FASTQ files generated above and aligns them to a
pre-indexed genome.
library("Rsamtools")

BWA indices were generated using bwa version 0.7.10

bwa_index <- "GRCHz10.fa.gz"

bam_dir <- system.file(package="CrispRVariants", "extdata/bam")

fq_fnames <- file.path(fq_dir,unique(fq_fnames))

bm_fnames <- gsub(".fastq$",".bam",basename(fq_fnames))

srt_bm_fnames <- file.path(bam_dir, gsub(".bam","_s",bm_fnames))

Map, sort and index the bam files, remove the unsorted bams

for(i in 1:length(fq_fnames)) {

cmd <- paste0("bwa mem ", bwa_index, " ", fq_fnames[i],

" | samtools view -Sb - > ", bm_fnames[i])

message(cmd, "\n"); system(cmd)

indexBam(sortBam(bm_fnames[i],srt_bm_fnames[i]))

unlink(bm_fnames[i])

}

See the help for bwa index at the bwa man page and for general details on mapping sequences
to a genome reference.

3.3 List the BAM files
To allow easy matching to experimental condition (e.g., useful for colour labeling) and for
subsetting to experiments of interest, we often organize the list of BAM files together with
accompanying metadata in a machine-readable table beforehand. Here we read the bam
filenames from a metadata table which also contains sample names and experimental grouping
information. Note that we could also have used the bam filenames listed above.
The metadata and bam files for this experiment are included with CrispRVariants

library("gdata")

md_fname <- system.file(package="CrispRVariants", "extdata/metadata/metadata.xls")

md <- gdata::read.xls(md_fname, 1)

md

bamfile directory

1 ab1_ptena_phenotype_embryo_1_s.bam ptena/phenotype/embryo 1

2 ab1_ptena_phenotype_embryo_2_s.bam ptena/phenotype/embryo 2

3 ab1_ptena_wildtype_looking_embryo_1_s.bam ptena/wildtype looking/embryo 1

4 ab1_ptena_wildtype_looking_embryo_2_s.bam ptena/wildtype looking/embryo 2

5 ab1_ptena_uninjected_embryo_1_s.bam ptena/uninjected/embryo 1

Short.name Targeting.type sgRNA1 sgRNA2 Group

1 ptena 1 single ptena_ccA NA strong

5

http://bio-bwa.sourceforge.net/bwa.shtml

CrispRVariants User Guide

2 ptena 2 single ptena_ccA NA strong

3 ptena 3 single ptena_ccA NA mild

4 ptena 4 single ptena_ccA NA mild

5 control single ptena_ccA NA control

Get the bam filenames from the metadata table

bam_dir <- system.file(package="CrispRVariants", "extdata/bam")

bam_fnames <- file.path(bam_dir, md$bamfile)

check that all files exist

all(file.exists(bam_fnames))

[1] TRUE

3.4 Create the target location and reference sequence
Given a set of BAM files with the amplicon sequences of interest mapped to the reference
genome, we need to collect a few additional pieces of information about the guide sequence
and define the area around the guide that we want to summarize the mutation spectrum over.
The coordinates of the region of interest can be obtained by running BLAST or BLAT on the
guide sequence or by mapping the guide sequence to the reference sequence. The coordinates,
or “target” should be represented as a GenomicRanges::GRanges object. This can be
created directly, but here we will import the coordinates of the guide sequence from a BED
file using the rtracklayer package. The import() commmand below returns a GRanges object.
library(rtracklayer)

Represent the guide as a GenomicRanges::GRanges object

gd_fname <- system.file(package="CrispRVariants", "extdata/bed/guide.bed")

gd <- rtracklayer::import(gd_fname)

gd

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | name score

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr17 23648474-23648496 - | ptena_ccA 0

seqinfo: 1 sequence from an unspecified genome; no seqlengths

The 23bp (including PAM) ptena guide sequence used in this experiment is located on
chromosome chr17 from 23648474-23648496. We prefer to analyse a slightly larger region.
Below, we’ll extend the guide region by 5 bases on each side when counting variants. Note
that the expected cut site (used later for labeling variants), after extension, isat base 22 with
respect to the start of the new target sequence.
gdl <- GenomicRanges::resize(gd, width(gd) + 10, fix = "center")

With the Bioconductor BSgenome packages, the reference sequence itself can be retrieved
directly into a DNAStringSet object. For other genomes, the reference sequence can be
retrieved from a genome by first indexing the genome with samtools faidx and then fetching
the required region (for an alternative method, see the note for Windows and Galaxy users
below). Here we are using the GRCHz10 zebrafish genome. The reference sequence was
fetched and saved as follows:

6

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://genome.ucsc.edu/FAQ/FAQblat.html

CrispRVariants User Guide

system("samtools faidx GRCHz10.fa.gz")

reference=system(sprintf("samtools faidx GRCHz10.fa.gz %s:%s-%s",

seqnames(gdl)[1], start(gdl)[1], end(gdl)[1]),

intern = TRUE)[[2]]

The guide is on the negative strand, so the reference needs to be reverse complemented

reference=Biostrings::reverseComplement(Biostrings::DNAString(reference))

save(reference, file = "ptena_GRCHz10_ref.rda")

We’ll load the previously saved reference sequence.
ref_fname <- system.file(package="CrispRVariants", "extdata/ptena_GRCHz10_ref.rda")

load(ref_fname)

reference

33-letter DNAString object

seq: GCCATGGGCTTTCCAGCCGAACGATTGGAAGGT

Note the NGG sequence (here, TGG) is present with the 5 extra bases on the end.

3.4.1 Note for Windows and Galaxy Users

If you do not have a copy of the genome you used for mapping on the computer you are using
to analyse your data, or you cannot install samtools because you are working on Windows,
CrispRVariants provides an alternative, albeit slower, method for fetching the reference
sequence:
First read the alignments into R. The alignments must include

the read sequences and the MD tag

alns <- GenomicAlignments::readGAlignments(bam_fnames[[1]],

param = Rsamtools::ScanBamParam(tag = "MD", what = c("seq", "flag")),

use.names = TRUE)

Then reconstruct the reference for the target region.

If no target region is given, this function will reconstruct

the complete reference sequence for all reads.

rfa <- refFromAlns(alns, gdl)

The reconstructed reference sequence is identical to the sequence

extracted from the reference above

print(rfa == reference)

[1] TRUE

Note that the object alns created above can be directly passed to the function readsToTarget

(see below) instead of the bam filenames. If there is more than one bam file, readsToTarget
can also accept a GAlignmentsList object (see the GenomicAlignments package) for more
details).

3.5 Creating a CrisprSet
The next step is to create a CrisprSet object, which is the container that stores the relevant
sequence information, alignments, observed variants and their frequencies.

7

https://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html

CrispRVariants User Guide

Note that the zero point (target.loc parameter) is 22

crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,

names = md$Short.name, target.loc = 22)

crispr_set

CrisprSet object containing 5 CrisprRun samples

Target location:

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | name score

<Rle> <IRanges> <Rle> | <character> <numeric>

[1] chr17 23648469-23648501 - | ptena_ccA 0

seqinfo: 1 sequence from an unspecified genome; no seqlengths

[1] "Most frequent variants:"

ptena 1 ptena 2 ptena 3 ptena 4 control

no variant 3 4 4 0 7

-1:4D 0 0 0 2 0

6:1D 0 0 0 1 1

1:7I 1 0 0 0 0

2:1D,4:5I 0 0 0 1 0

Other 0 0 1 1 0

The counts table can be accessed with the "variantCounts" function

vc <- variantCounts(crispr_set)

print(class(vc))

[1] "matrix" "array"

You can see that in the table of variant counts, variants are summarised by the location of their
insertions and deletions with respect to the target site. Non-variant sequences and sequences
with a single nucleotide variant (SNV) but no insertion or deletion (indel) are displayed first,
followed by the indel variants from most to least frequent For example, the most frequent
non-wild-type variant, “-1:4D” is a 4 base pair deletion starting 1 base upstream of the zero
point.

3.6 Creating summary plots of variants
We want to plot the variant frequencies along with the location of the guide sequence relative
to the known transcripts. If you do this repeatedly for the same organism, it is worthwhile to
save the database in a local file and read in with loadDb(), since this is quicker than retrieving
it from UCSC (or Ensembl) each time.
We start by creating a transcript database of Ensembl genes. The gtf was downloaded from
Ensembl version 81. We first took a subset of just the genes on chromosome 17 and then
generated a transcript database.
Extract genes on chromosome 17 (command line)

Note that the Ensembl gtf does not include the "chr" prefix, so we add it here

gtf=Danio_rerio.GRCz10.81.gtf.gz

zcat ${gtf} | awk '($1 == 17){print "chr"$0}' > Danio_rerio.GRCz10.81_chr17.gtf

In R

library(GenomicFeatures)

8

CrispRVariants User Guide

gtf_fname <- "Danio_rerio.GRCz10.81_chr17.gtf"

txdb <- GenomicFeatures::makeTxDbFromGFF(gtf_fname, format = "gtf")

saveDb(txdb, file= "GRCz10_81_chr17_txdb.sqlite")

We now load the the previously saved database
plotVariants() is a wrapper function that groups together a plot of the transcripts of
the gene/s overlapping the guide (optional), CrispRVariants::plotAlignments(), which dis-
plays the alignments of the consensus variant sequences to the reference, and CrispRVari-
ants::plotFreqHeatmap(), which produces a table of the variant counts per sample, coloured
by either their counts or percentage contribution to the variants observed for a given sample.
If a transcript database is supplied, the transcript plot is annotated with the guide location.
Arguments for plotAlignments() and plotFreqHeatmap() can be passed to plotVariants() as
lists named plotAlignments.args and plotFreqHeatmap.args, respectively.
The gridExtra package is required to specify the legend.key.height

as a "unit" object. It is not needed to call plotVariants() with defaults

library(gridExtra)

Match the clutch id to the column names of the variants

group <- md$Group

p <- plotVariants(crispr_set, txdb = txdb, gene.text.size = 8,

row.ht.ratio = c(1,8), col.wdth.ratio = c(4,2),

plotAlignments.args = list(line.weight = 0.5, ins.size = 2,

legend.symbol.size = 4),

plotFreqHeatmap.args = list(plot.text.size = 3, x.size = 8, group = group,

legend.text.size = 8,

legend.key.height = grid::unit(0.5, "lines")))

Warning in min(xranges): no non-missing arguments to min; returning Inf

Warning in max(xranges): no non-missing arguments to max; returning -Inf

Warning in max(yranges): no non-missing arguments to max; returning -Inf

Warning: Vectorized input to `element_text()` is not officially supported.

Results may be unexpected or may change in future versions of ggplot2.

The plotVariants() options set the text size of the transcript plot annotation (gene.text.size)
and the relative heights (row.ht.ratio) and widths (col.wdth.ratio) of the plots.
The plotAlignments arguments set the symbol size in the figure (ins.size) and in the legend
(legend.symbol), the line thickness for the (optional) annotation of the guide region and
cleavage site (line.weight).
For plotFreqHeatmap we define an grouping variable for colouring the x-axis labels (group),
the size of the text within the plot (plot.text.size) and on the x-axis (x.size) and set the size
of the legend text (legend.text.size).

3.7 Calculating the mutation efficiency
The mutation efficiency is the number of reads that include an insertion or deletion. Chimeric
reads and reads containing single nucleotide variants near the cut site may be counted as
variant reads, non-variant reads, or excluded entirely. See the help page for the function
mutationEfficiency for more details.

9

CrispRVariants User Guide

< < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

23646500 23647000 23647500 23648000 23648500

ENSDARG00000071018

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

T

C

C

C

C

A

A

A

A

A

A

A

A

A

T

N

T

T

T

T

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

T

T

T

T

T

T

T

T

T

T

T

T

T

C

T

T

T

T

T

N

T

T

T

T

T

T

T

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

A

A

A

−

A

A

A

A

N

A

A

N

−

A

C

T

C

−

C

C

G

−

G

G

G

G

−

G

G

−

−

A

A

A

A

−

A

A

T

T

N

T

T

N

−

T

T

T

N

T

T

T

N

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

−

G

G

G

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

G

N

G

G

G

G

G

G

G

G

N

G

G

G

G

G

G

G

N

T

N

N

N

T

N

T

T

Other

2:1D,4:5I

−2:4D

1:2I,3:5I

1:1I

1:7I

6:1D

−1:4D

no variant

Reference

−20 −15 −10 −5 −1 1 5 10

AG

AGGNG

C

GTTTG

TCGAACT

4

3

0

0

1

0

0

0

0

0

7

4

0

0

0

1

1

1

0

0

5

4

0

0

0

0

0

0

0

1

5

0

2

1

0

0

0

0

1

1

8

7

0

1

0

0

0

0

0

0

pt
en

a
1

pt
en

a
2

pt
en

a
3

pt
en

a
4

co
nt

ro
l

Percentage
0
25
50
75
100

Figure 1: (Top) schematic of gene structure showing guide location (left) consensus sequences for variants
(right) variant counts in each embryo.

We can see in the plot above that the control sample includes a variant sequence 6:1D, also
present in sample ptena 4. We will exclude all sequences with this variant from the efficiency
calculation. We also demonstrate below how to exclude particular variants.
Calculate the mutation efficiency, excluding indels that occur in the "control" sample

and further excluding the "control" sample from the efficiency calculation

eff <- mutationEfficiency(crispr_set, filter.cols = "control", exclude.cols = "control")

eff

ptena 1 ptena 2 ptena 3 ptena 4 Average Median Overall StDev

25.00 42.86 20.00 80.00 41.96 33.93 42.86 1.50

ReadCount

21.00

Suppose we just wanted to filter particular variants, not an entire sample.

This can be done using the "filter.vars" argument

eff2 <- mutationEfficiency(crispr_set, filter.vars = "6:1D", exclude.cols = "control")

The results are the same in this case as only one variant was filtered from the control

identical(eff,eff2)

[1] TRUE

10

CrispRVariants User Guide

We see above that sample ptena 4 has an efficiency of 80%, i.e. 4 variant sequences, plus one
sequence “6:1D” which is counted as a non-variant sequence as it also occurs in the control
sample.

3.8 Get consensus alleles
The consensus sequences for variant alleles can be accessed using consensusSeqs. This
function allows filtering by variant frequency or read count, as for plotAlignments and
plotFreqHeatmap. Consensus alleles are returned with respect to the positive strand.
sqs <- consensusSeqs(crispr_set)

sqs

DNAStringSet object of length 8:

width seq names

[1] 33 ACCTTCCAATCGTTCGGCTGGAAAGCCCATGGC no variant

[2] 29 NCCTTCCANTCGGCTGGAAAGCCCATGGC -1:4D

[3] 32 ACCTTCNNTCGTTCGGCTGGAAAGCCCATGGC 6:1D

[4] 40 NCCTTCCAATCAGTTCGAATTCGGCTGGAGAGCCCATAGC 1:7I

[5] 34 NCCTTCCAATCGGTTCGGCTGGAAAGCCCATGGC 1:1I

[6] 40 NCCTTCCANCNCCTTCCTTTTCGGCTGGAAAGCCCATGGC 1:2I,3:5I

[7] 29 ANNTTCNNATCGGCTGGNAAGCCNNTGGC -2:4D

[8] 37 NCCTTCCACAAACACNTTCGGCTGGAAAGCCCATGGC 2:1D,4:5I

The ptena guide is on the negative strand.

Confirm that the reverse complement of the "no variant" allele

matches the reference sequence:

Biostrings::reverseComplement(sqs[["no variant"]]) == reference

[1] TRUE

3.9 Plot chimeric alignments
When deciding whether chimeric alignments should be considered as variant sequences, it can
be useful to plot the frequent chimeras.
ch <- getChimeras(crispr_set, sample = "ptena 4")

Confirm that all chimeric alignments are part of the same read

length(unique(names(ch))) == 1

[1] TRUE

Set up points to annotate on the plot

annotations <- c(resize(gd, 1, fix = "start"), resize(gd, 1, fix = "end"))

annotations$name <- c("ptena_start", "ptena_end")

plotChimeras(ch, annotations = annotations)

11

CrispRVariants User Guide

ptena_startptena_start

ptena_endptena_end

23648420

23648440

23648460

23648480

23648500

23648520

23648540

23648560

23648580

23648600

23648620

23648640

23648656

0 10
0

20
0

30
0

40
0

50
0

Read location

C
hr

om
os

om
al

 lo
ca

tio
n

Chromosome

chr17

Here we see the read aligns as two tandem copies of the region chr17:23648420-23648656.
The endpoint of each copy is not near the guide sequence. We do not consider this a genuine
mutation, so we’ll recalculate the mutation efficiency excluding the chimeric reads and the
control variant as before.
mutationEfficiency(crispr_set, filter.cols = "control", exclude.cols = "control",

include.chimeras = FALSE)

ptena 1 ptena 2 ptena 3 ptena 4 Average Median Overall StDev

25.00 42.86 0.00 75.00 35.71 33.93 36.84 1.50

ReadCount

19.00

We see that the mutation effiency for “ptena 4” is now 75%, i.e. 3 genuine variant sequences,
1 sequence counted as “non-variant” because it occurs in the control, and the chimeric read
excluded completely

4 Choosing the strand for display
CrispRVariants is capable of tabulating variants with respect to either strand. By default,
variant alleles are displayed with respect to the target strand, i.e. sequences for a guide on
the negative strand are reverse complemented for display. For some applications it may be
preferable to display the variants on the opposite strand, for example if a guide on the negative
strand is used to target a gene on the positive strand. The display strand is controlled using
the orientation parameter in readsToTarget(s) during initialization.
To illustrate, we will plot the variants for ptena on the positive strand. Note that the only
changes to the initialization code is the orientation parameter. In particular, the target.loc is
still specified with respect to the guide sequence and the reference is still the guide sequence,
not its reverse complement.

crispr_set_rev <- readsToTarget(bam_fnames, target = gdl, reference = reference,

names = md$Short.name, target.loc = 22,

orientation = "opposite")

12

CrispRVariants User Guide

plotVariants(crispr_set_rev)

N

A

N

N

N

A

N

A

G

C

N

C

C

C

C

C

C

C

C

N

C

C

C

C

C

C

C

T

T

T

T

T

T

T

T

A

T

T

T

T

T

T

T

T

T

C

C

C

C

C

−

C

C

G

C

N

C

C

C

C

C

C

G

A

N

A

A

A

N

A

A

G

A

A

N

A

A

N

−

A

C

−

−

T

T

T

T

−

T

T

C

−

C

C

C

C

−

C

T

N

−

T

G

A

G

−

G

T

T

−

T

T

T

T

N

T

C

T

T

T

T

T

T

T

T

C

C

C

C

C

C

C

C

C

A

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

T

T

T

T

T

T

T

T

G

G

G

G

G

G

G

G

G

A

G

G

G

G

G

G

G

G

A

A

N

A

A

A

A

A

A

C

A

A

A

A

G

A

A

A

G

A

A

A

A

A

A

A

A

A

G

G

G

G

G

G

G

G

T

C

C

C

C

C

C

C

C

T

C

C

C

C

C

C

C

C

G

C

N

C

C

C

C

C

C

G

A

N

A

A

A

A

A

A

A

T

T

T

T

T

T

T

T

A

G

G

G

G

A

G

G

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

T

Other

3:5I,2:1D

2:4D

2:5I,−1:2I

−1:1I

−1:7I

6:1D

3:4D

no variant

Reference

10 5 1 −1 −5 −10 −15 −20

AGTTCGA

CAAAC

CNCCT

CT

G

4

3

0

0

1

0

0

0

0

0

7

4

0

0

0

1

1

1

0

0

5

4

0

0

0

0

0

0

0

1

5

0

2

1

0

0

0

0

1

1

8

7

0

1

0

0

0

0

0

0

pt
en

a
1

pt
en

a
2

pt
en

a
3

pt
en

a
4

co
nt

ro
l

Percentage

0

25

50

75

100

TableGrob (2 x 1) "arrange": 2 grobs

z cells name grob

1 1 (1-1,1-1) arrange rect[GRID.rect.246]

2 2 (2-2,1-1) arrange gtable[arrange]

Note that variants are labelled with respect to their leftmost coordinate, so the labelled variant
location changes when plotting on the opposite strand.

5 Multiple guides
CrispRVariants accepts an arbitrarily long reference sequence and target region. By default,
reads must span the target region to be counted. Since v1.3.6, a new argument minoverlap

to readsToTarget is available, which allows reads which do not span the target region to be
counted, provided they have at least minoverlap aligned bases overlapping the target. This is
particularly important when the target region is close to or greater than the sequencing read
length.
When using CrispRVariants with multiple guides, initialisation of a CrisprSet object is done
as for a single guide, but with the reference and target parameters corresponding to a region
spanning the guides of interest. One important parameter is the target location, or target.loc
which determines how the variant alleles are numbered. For a single guide, position zero would

13

CrispRVariants User Guide

typically be the cut site. With multiple guides, possible zero points might include the cut site
of the leftmost guide or the first base of the amplified sequence. Multiple guide sequences are
first indicated at the stage of plotting.
In the example below, we reuse the ptena data used in the case study. In this experiment, a
single guide was injected. However, for illustrative purposes we will treat the data as if it was
a paired injection of two nearby guides.
We create a longer region to use as the "target"

and the corresponding reference sequence

gdl <- GenomicRanges::resize(gd, width(gd) + 20, fix = "center")

reference <- Biostrings::DNAString("TCATTGCCATGGGCTTTCCAGCCGAACGATTGGAAGGTGTTTA")

At this stage, target should be the entire region to display and target.loc should

be the zero point with respect to this region

crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,

names = md$Short.name, target.loc = 10,

verbose = FALSE)

Multiple guides are added at the stage of plotting

The boundaries of the guide regions must be specified with respect to the

given target region

p <- plotVariants(crispr_set,

plotAlignments.args = list(pam.start = c(6,35),

target.loc = c(10, 32),

guide.loc = IRanges::IRanges(c(6, 25),c(20, 37))))

T

T

T

T

T

T

T

T

T

T

T

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

A

A

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

T

C

C

C

C

C

C

A

A

A

A

A

A

A

A

C

A

A

T

N

T

T

T

T

T

T

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

T

T

T

T

T

T

T

C

T

T

T

T

T

T

T

C

T

T

T

T

T

T

T

N

T

T

T

T

T

T

T

T

T

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

A

A

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

G

G

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

A

A

A

A

A

−

A

A

A

A

N

A

A

A

A

N

−

A

C

T

C

−

C

C

C

C

G

−

G

G

G

G

−

G

G

G

G

−

−

A

A

A

A

−

A

A

A

A

T

T

N

T

T

N

−

T

T

T

T

T

N

T

T

T

N

T

T

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

G

G

−

G

G

G

G

G

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

G

N

G

G

G

G

G

G

G

G

G

G

N

G

G

G

G

G

G

G

G

G

N

T

N

N

N

T

N

N

T

T

T

G

G

G

G

G

G

G

N

G

G

G

N

T

N

N

T

T

N

N

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

N

T

T

T

T

T

T

T

T

T

A

N

A

A

A

N

A

A

A

A

A

Other

19:1D,21:5I

16:4D

18:2I,20:5I

18:1I

18:7I

23:1D

17:4D

SNV:5C

SNV:−2C

no variant

Reference

−10 −5 −11 5 10 15 20 25 30

AG

AGGNG

C

GTTTG

TCGAACT

4

3

0

0

0

0

1

0

0

0

0

0

7

4

0

0

0

0

0

1

1

1

0

0

5

3

1

0

0

0

0

0

0

0

0

1

5

0

0

0

2

1

0

0

0

0

1

1

8

6

0

1

0

1

0

0

0

0

0

0

pt
en

a
1

pt
en

a
2

pt
en

a
3

pt
en

a
4

co
nt

ro
l

Percentage

0

25

50

75

100

p

TableGrob (2 x 1) "arrange": 2 grobs

z cells name grob

1 1 (1-1,1-1) arrange rect[GRID.rect.390]

2 2 (2-2,1-1) arrange gtable[arrange]

14

CrispRVariants User Guide

In the above call to plotAlignments, pam.start and pam.end control where the box around
the PAM sequence is drawn, target.loc controls where vertical lines are drawn (note this
does not have to match the target.loc passed to readsToTarget), and guide.loc controls
where the box around the guide is drawn.

6 Changing the appearance of plots
Note that arguments for CrispRVariants::plotAlignments described below can be passed to
CrispRVariants::plotVariants as a list, e.g. plotAlignments.args = list(axis.text.size =

14). Similarly, arguments for CrispRVariants::plotFreqHeatmap are passed through plotVariants
via plotFreqHeatmap.args.

6.1 Filtering data in plotVariants
For the following examples, we will use the ptena data set. We must first load the data and
create a CrispRVariants::CrisprSet object.
Setup for ptena data set

library("CrispRVariants")

library("rtracklayer")

library("GenomicFeatures")

library("gdata")

Load the guide location

gd_fname <- system.file(package="CrispRVariants", "extdata/bed/guide.bed")

gd <- rtracklayer::import(gd_fname)

gdl <- resize(gd, width(gd) + 10, fix = "center")

The saved reference sequence corresponds to the guide

plus 5 bases on either side, i.e. gdl

ref_fname <- system.file(package="CrispRVariants",

"extdata/ptena_GRCHz10_ref.rda")

load(ref_fname)

Load the metadata table, which gives the sample names

md_fname <- system.file(package="CrispRVariants",

"extdata/metadata/metadata.xls")

md <- gdata::read.xls(md_fname, 1)

Get the list of bam files

bam_dir <- system.file(package="CrispRVariants", "extdata/bam")

bam_fnames <- file.path(bam_dir, md$bamfile)

Check that all files were found

all(file.exists(bam_fnames))

[1] TRUE

crispr_set <- readsToTarget(bam_fnames, target = gdl, reference = reference,

names = md$Short.name, target.loc = 22,

verbose = FALSE)

15

CrispRVariants User Guide

Load the transcript database

txdb_fname <- system.file("extdata/GRCz10_81_ptena_txdb.sqlite",

package="CrispRVariants")

txdb <- AnnotationDbi::loadDb(txdb_fname)

Here is the ptena data set plotted with default options:
p <- plotVariants(crispr_set, txdb = txdb)

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

< < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

23646500 23647000 23647500 23648000 23648500

ENSDARG00000071018

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

T

C

C

C

C

A

A

A

A

A

A

A

A

A

T

N

T

T

T

T

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

T

T

T

T

T

T

T

T

T

T

T

T

T

C

T

T

T

T

T

N

T

T

T

T

T

T

T

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

A

A

A

−

A

A

A

A

N

A

A

N

−

A

C

T

C

−

C

C

G

−

G

G

G

G

−

G

G

−

−

A

A

A

A

−

A

A

T

T

N

T

T

N

−

T

T

T

N

T

T

T

N

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

−

G

G

G

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

G

N

G

G

G

G

G

G

G

G

N

G

G

G

G

G

G

G

N

T

N

N

N

T

N

T

T

Other

2:1D,4:5I

−2:4D

1:2I,3:5I

1:1I

1:7I

6:1D

−1:4D

no variant

Reference

−20 −15 −10 −5 −1 1 5 10

AG

AGGNG

C

GTTTG

TCGAACT

4

3

0

0

1

0

0

0

0

0

7

4

0

0

0

1

1

1

0

0

5

4

0

0

0

0

0

0

0

1

5

0

2

1

0

0

0

0

1

1

8

7

0

1

0

0

0

0

0

0

pt
en

a
1

pt
en

a
2

pt
en

a
3

pt
en

a
4

co
nt

ro
l

Percentage

0

25

50

75

100

The layout of this plot is controlled mainly by two parameters: row.ht.ratio and
col.wdth.ratio. row.ht.ratio (default c(1,6)) controls the relative sizes of the transcript
plot and the other plots. Below we show how to change the ratio so that the transcript plot
is relatively larger:
p <- plotVariants(crispr_set, txdb = txdb, row.ht.ratio = c(1,3))

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

16

CrispRVariants User Guide

< < < <
< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <
< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <
< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <
< < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

23646500 23647000 23647500 23648000 23648500

ENSDARG00000071018

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

T

C

C

C

C

A

A

A

A

A

A

A

A

A

T

N

T

T

T

T

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

T

T

T

T

T

T

T

T

T

T

T

T

T

C

T

T

T

T

T

N

T

T

T

T

T

T

T

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

A

A

A

−

A

A

A

A

N

A

A

N

−

A

C

T

C

−

C

C

G

−

G

G

G

G

−

G

G

−

−

A

A

A

A

−

A

A

T

T

N

T

T

N

−

T

T

T

N

T

T

T

N

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

−

G

G

G

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

G

N

G

G

G

G

G

G

G

G

N

G

G

G

G

G

G

G

N

T

N

N

N

T

N

T

T

Other

2:1D,4:5I

−2:4D

1:2I,3:5I

1:1I

1:7I

6:1D

−1:4D

no variant

Reference

−20 −15 −10 −5 −1 1 5 10

AG

AGGNG

C

GTTTG

TCGAACT

4

3

0

0

1

0

0

0

0

0

7

4

0

0

0

1

1

1

0

0

5

4

0

0

0

0

0

0

0

1

5

0

2

1

0

0

0

0

1

1

8

7

0

1

0

0

0

0

0

0

pt
en

a
1

pt
en

a
2

pt
en

a
3

pt
en

a
4

co
nt

ro
l

Percentage

0

25

50

75

100

Similarly, col.wdth.ratio controls the width ratio of the alignment plot and the heatmap
(default c(2,1), i.e. the alignment plot is twice as wide as the heatmap). Below we alter this
to make the alignment plot comparatively wider:
p <- plotVariants(crispr_set, txdb = txdb, col.wdth.ratio = c(4,1))

< < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < << < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <

23646500 23647000 23647500 23648000 23648500

ENSDARG00000071018

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

T

C

C

C

C

A

A

A

A

A

A

A

A

A

T

N

T

T

T

T

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

T

T

T

T

T

T

T

T

T

T

T

T

T

C

T

T

T

T

T

N

T

T

T

T

T

T

T

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

G

G

G

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

A

A

A

−

A

A

A

A

N

A

A

N

−

A

C

T

C

−

C

C

G

−

G

G

G

G

−

G

G

−

−

A

A

A

A

−

A

A

T

T

N

T

T

N

−

T

T

T

N

T

T

T

N

T

T

T

G

N

G

G

G

G

G

G

G

G

G

G

G

G

−

G

G

G

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

G

N

G

G

G

G

G

G

G

G

N

G

G

G

G

G

G

G

N

T

N

N

N

T

N

T

T

Other

2:1D,4:5I

−2:4D

1:2I,3:5I

1:1I

1:7I

6:1D

−1:4D

no variant

Reference

−20 −15 −10 −5 −1 1 5 10

AG

AGGNG

C

GTTTG

TCGAACT

4

3

0

0

1

0

0

0

0

0

7

4

0

0

0

1

1

1

0

0

5

4

0

0

0

0

0

0

0

1

5

0

2

1

0

0

0

0

1

1

8

7

0

1

0

0

0

0

0

0

pt
en

a
1

pt
en

a
2

pt
en

a
3

pt
en

a
4

co
nt

ro
l

Percentage

0

25

50

75

100

The remaining examples in this section use the gol data set.
Load gol data set

library("CrispRVariants")

data("gol_clutch1")

17

CrispRVariants User Guide

The data used in plotAlignments and plotFreqHeatmap can be filtered by either frequency
via min.freq, count via min.count, or to show a set number of alleles sorted by frequency, via
top.n. Within plotVariants, these filtering options need to be set for both plotAlignments

and plotFreqHeatmap. We also add space to the bottom of the plot to prevent clipping of
the labels.
library(GenomicFeatures)

p <- plotVariants(gol, plotAlignments.args = list(top.n = 3),

plotFreqHeatmap.args = list(top.n = 3),

left.plot.margin = ggplot2::unit(c(0.1,0,5,0.2), "lines"))

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

8
3

0

0

6
4

0

1

9
8

0

0

8
8

0

0

9
0

0

3

9
5

0

3

15
3

12

0

13
7

0

0

go
l F

1
cr

is
pa

nt
 1

go
l F

1
cr

is
pa

nt
 2

go
l F

1
cr

is
pa

nt
 3

go
l F

1
cr

is
pa

nt
 4

go
l F

1
cr

is
pa

nt
 5

go
l F

1
cr

is
pa

nt
 6

go
l F

1
cr

is
pa

nt
 7

go
l F

1
cr

is
pa

nt
 8

Percentage

0

25

50

75

100

At present, filtering by sample (column) is possible for plotFreqHeatmap via the order

parameter (which can also be used to reorder columns), but not plotAlignments.
plotVariants(gol, plotAlignments.args = list(top.n = 3),

plotFreqHeatmap.args = list(top.n = 3, order = c(1,5,3)),

left.plot.margin = ggplot2::unit(c(0.1,0,5,0.2), "lines"))

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

8
3

0

0

9
0

0

3

9
8

0

0

go
l F

1
cr

is
pa

nt
 1

go
l F

1
cr

is
pa

nt
 5

go
l F

1
cr

is
pa

nt
 3

Percentage

0

25

50

75

100

TableGrob (2 x 1) "arrange": 2 grobs

z cells name grob

1 1 (1-1,1-1) arrange rect[GRID.rect.1174]

2 2 (2-2,1-1) arrange gtable[arrange]

6.2 plotAlignments

6.2.1 Insertion symbols

The symbols indicating insertions are controlled by four parameters. ins.size (default 3)
controls the size of the symbols within the plot area.
plotAlignments(gol, top.n = 3, ins.size = 6)

18

CrispRVariants User Guide

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

By default the symbols in the legend are the same size as those in the plot, but this can be
controlled separately with legend.symbol.size.
plotAlignments(gol, top.n = 3, legend.symbol.size = 6)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

As long sequences can make the plot difficult to read, by default only the length of insertions
greater then 20bp is shown. This can be changed with the max.insertion.size parameter.
If there is more than one allele, the number of (frequent) alleles is indicated.
plotAlignments(gol, top.n = 5, max.insertion.size = 25)

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

T

T

T

−

T

T

G

G

G

−

G

G

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

G

−

G

−

G

G

C

−

C

−

C

C

A

−

A

−

A

A

G

−

G

−

G

G

G

−

G

−

G

G

A

−

A

−

A

A

T

−

T

−

−

T

G

−

G

−

−

G

T

−

G

−

−

T

T

−

T

T

T

T

G

G

G

G

G

G

G

C

A

C

C

C

T

T

T

T

T

T

G

G

G

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

−1:3I,5:21I

−9:10D

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

CTCCCTTGGATCTCGCAGGAN,
CTCTCTTGGATCTCGCAGGAN,
CTCTCTTGGATCTCGCANGAN

CTTGGNNNNTCTTGGATCTCGCAN,
CTTGGTCTCTCTTGGATCTCGCAG,
CTTGGTCTCTCTTGGATCTCGCAN,
NTNNNTCTCTCTTGGATCTCGCAG

GTC

Finally, the parameter min.insertion.freq (default 5%) controls how many alleles are
displayed at each insertion locus. In large data sets, there will be a substantial proportion of
reads with sequencing errors, and we may only wish to display the most common sequences.
Here we set a fairly high value of 50% for min.insertion.freq

As ambiguous nucleotides occur frequently in this data set,

there are no alleles passing this cutoff.

plotAlignments(gol, top.n = 5, min.insertion.freq = 50)

19

CrispRVariants User Guide

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

T

T

T

−

T

T

G

G

G

−

G

G

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

G

−

G

−

G

G

C

−

C

−

C

C

A

−

A

−

A

A

G

−

G

−

G

G

G

−

G

−

G

G

A

−

A

−

A

A

T

−

T

−

−

T

G

−

G

−

−

G

T

−

G

−

−

T

T

−

T

T

T

T

G

G

G

G

G

G

G

C

A

C

C

C

T

T

T

T

T

T

G

G

G

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

−1:3I,5:21I

−9:10D

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

21I 24I (0 common alleles) GTC

max.insertion.size and min.insertion.freq can be combined. In this case, alleles longer
than max.insertion.size but less frequent than min.insertion.freq will be collapsed.
plotAlignments(gol, top.n = 5, max.insertion.size = 25, min.insertion.freq = 50)

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

T

T

T

−

T

T

G

G

G

−

G

G

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

G

−

G

−

G

G

C

−

C

−

C

C

A

−

A

−

A

A

G

−

G

−

G

G

G

−

G

−

G

G

A

−

A

−

A

A

T

−

T

−

−

T

G

−

G

−

−

G

T

−

G

−

−

T

T

−

T

T

T

T

G

G

G

G

G

G

G

C

A

C

C

C

T

T

T

T

T

T

G

G

G

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

−1:3I,5:21I

−9:10D

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

CTCTCTTGGATCTCGCAGGAN 24I (0 common alleles) GTC

6.2.2 Whitespace between rows

The space between rows is controlled with the tile.height parameter (default 0.55). Values
closer to 0 increase the space between rows, whilst values closer to 1 decrease the space
between rows.
No white space between rows

plotAlignments(gol, top.n = 3, tile.height = 1)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

More white space between rows

plotAlignments(gol, top.n = 3, tile.height = 0.3)

20

CrispRVariants User Guide

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

6.2.3 Box around guide

The black box around the guide sequence can be removed by setting highlight.guide =

FALSE.
plotAlignments(gol, top.n = 3, highlight.guide = FALSE)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

By default, the box around the guide is drawn from 17 bases upstream of the target.loc to
6 bases downstream. For experiments with a truncated guide, or other non-standard guide
location, the box must be manually specified. The guide location can be altered by setting the
guide.loc parameter. This can be either an IRanges::IRanges or GenomicRanges::GRanges

object.
library(IRanges)

guide <- IRanges::IRanges(15,28)

plotAlignments(gol, top.n = 3, guide.loc = guide)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

21

CrispRVariants User Guide

6.2.4 Text sizes

The text showing bases within the alignment plot is controlled by plot.text.size (default
2), and can be removed completely by setting plot.text.size = 0. The axis labels and
legend labels are controlled with axis.text.size (default 8) and legend.text.size (default
6) respectively. The number of columns in the legend is controlled by legend.cols (default
3).
Here we increase the size of the axis labels and make

two columns for the legend

plotAlignments(gol, top.n = 5, axis.text.size = 12,

legend.text.size = 12, legend.cols = 2)

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

T

T

T

−

T

T

G

G

G

−

G

G

G

G

G

−

G

G

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

T

T

T

−

T

T

C

C

C

−

C

C

G

−

G

−

G

G

C

−

C

−

C

C

A

−

A

−

A

A

G

−

G

−

G

G

G

−

G

−

G

G

A

−

A

−

A

A

T

−

T

−

−

T

G

−

G

−

−

G

T

−

G

−

−

T

T

−

T

T

T

T

G

G

G

G

G

G

G

C

A

C

C

C

T

T

T

T

T

T

G

G

G

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

G

G

G

G

G

G

C

C

C

C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

−1:3I,5:21I
−9:10D

2:24I
−38:38D

−3:3D
Reference

−20 −15 −10 −5 −1 1 5 10

21I (3 common alleles)
24I (4 common alleles)

GTC

6.2.5 Box around PAM

The argument highlight.pam determines whether a box around the PAM should be drawn.
Don't highlight the PAM sequence

plotAlignments(gol, top.n = 3, highlight.pam = FALSE)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

By default this box is drawn 3 nucleotides downstream of the target.loc. Other applications
might require a different region highlighted. This can be achieved by explicitly setting the
start and end positions of the box, with respect to the reference sequence.

Highlight 3 bases upstream to 3 bases downstream of the target.loc

plotAlignments(gol, top.n = 3, pam.start = 19, pam.end = 25)

22

CrispRVariants User Guide

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

The boxes around the guide and the PAM can both be changed to arbitrary locations, however
note that the guide box is specified by a ranges object whilst the PAM box is specified by
start and end coordinates. Both coordinates are with respect to the start of the reference
sequence. The box around the guide is slightly wider than the box around the PAM.

plotAlignments(gol, top.n = 3, guide.loc = IRanges(5,10),

pam.start = 8, pam.end = 13)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

The thickness of the lines showing the cut site, the guide and the PAM are controlled with
line.weight (default 1).
plotAlignments(gol, top.n = 3, line.weight = 3)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

6.2.6 Add a codon frame

If the codon frame with respect to the first base of the target region is known, it can be
added to plot.alignments using the argument codon.frame

23

CrispRVariants User Guide

plotAlignments(gol, top.n = 3, codon.frame = 1)

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

6.2.7 Other modifications

To retreive the information used in plotAlignments when starting from a CrisprSet object,
use the argument create.plot = FALSE.
plot_data <- plotAlignments(gol, top.n = 3, create.plot = FALSE)

names(plot_data)

This data can be modified as required, then replotted using:

do.call(plotAlignments, plot_data)

6.3 plotFreqHeatmap
plotFreqHeatmap produces a heatmap of the counts or proportions of the variant alleles.
Typically, plotFreqHeatmap is passed a CrisprSet object, but it can also accept a matrix if
greater flexibility is required (see below). As plotFreqHeatmap returns a ggplot object, it
can also be modified using standard ggplot2 syntax. For example, we add a title to the plot
below.
By default, when given an object of class CrisprSet, plotFreqHeatmap shows the allele counts
and the header shows the total number of on-target reads in each sample. For example, the
following code shows the three most common variant alleles in the gol dataset. The header
here does not equal the sum of the columns as not all variants are shown in the plot.
Save the plot to a variable then add a title using ggplot2 syntax.

If the plot is not saved to a variable the unmodified plot is displayed.

p <- plotFreqHeatmap(gol, top.n = 3)

Warning in min(xranges): no non-missing arguments to min; returning Inf

Warning in max(xranges): no non-missing arguments to max; returning -Inf

Warning in max(yranges): no non-missing arguments to max; returning -Inf

p + labs(title = "A. plotFreqHeatmap with default options")

6.3.1 Plotting allele proportions

When calling plotFreqHeatmap with a CrisprSet object the type argument controls the
information shown in text in the heatmap. Setting type = "counts" (the default) shows allele
counts, setting type = "proportions" shows allele proportions. This also affects the default
header values. When type = "proportions" the header shows the column sums, i.e. the
percentage of the total number of reads shown in the plot.

24

CrispRVariants User Guide

8

3

0

0

6

4

0

1

9

8

0

0

8

8

0

0

9

0

0

3

9

5

0

3

15

3

12

0

13

7

0

02:24I

−38:38D

−3:3D

Total

go
l F

1
cr

is
pa

nt
 1

go
l F

1
cr

is
pa

nt
 2

go
l F

1
cr

is
pa

nt
 3

go
l F

1
cr

is
pa

nt
 4

go
l F

1
cr

is
pa

nt
 5

go
l F

1
cr

is
pa

nt
 6

go
l F

1
cr

is
pa

nt
 7

go
l F

1
cr

is
pa

nt
 8

Percentage

0

25

50

75

100

A. plotFreqHeatmap with default options

Figure 2: plotFreqHeatmap with default options

plotFreqHeatmap(gol, top.n = 3, type = "proportions")

Warning in min(xranges): no non-missing arguments to min; returning Inf

Warning in max(xranges): no non-missing arguments to max; returning -Inf

Warning in max(yranges): no non-missing arguments to max; returning -Inf

37.5

37.5

0

0

83.33

66.67

0

16.67

88.89

88.89

0

0

100

100

0

0

33.33

0

0

33.33

88.89

55.56

0

33.33

100

20

80

0

53.85

53.85

0

02:24I

−38:38D

−3:3D

Total

go
l F

1
cr

is
pa

nt
 1

go
l F

1
cr

is
pa

nt
 2

go
l F

1
cr

is
pa

nt
 3

go
l F

1
cr

is
pa

nt
 4

go
l F

1
cr

is
pa

nt
 5

go
l F

1
cr

is
pa

nt
 6

go
l F

1
cr

is
pa

nt
 7

go
l F

1
cr

is
pa

nt
 8

Percentage

0

25

50

75

100

Figure 3: plotFreqHeatmap showing allele proportions

6.3.2 Changing the header

There are three standard options for the header when calling plotFreqHeatmap with an object
of class CrisprSet:

• header = "default" shows total read counts when type = "counts" or column sums
when type = "proportions". See the examples above.

25

CrispRVariants User Guide

• header = "counts" shows total read counts. If variants are excluded, the values in
the header do necessarily equal the column totals. For example, see plot “C. Modified
plotFreqHeatmap” below.

• header = "efficiency" shows the mutation efficiency, i.e. the percentage of reads that
have an insertion or deletion variant. The mutation efficiency is calculated using the
default options of the function mutationEfficiency.

6.3.3 Heatmap colours

The tiles may be coloured by either the percentage of the column totals (default), or by the
counts, by setting as.percent = FALSE. For example, see plot “B. coloured X labels with tiles
coloured by count” below and contrast with plot “A. plotFreqHeatmap with default options”
above.

6.3.4 Changing colours of x-labels

The x-labels can be coloured by experimental group. To do this, a grouping vector must
be supplied by setting parameter group. Columns are ordered according to the levels of the
group. There should be one group value per column in the data.
ncolumns <- ncol(variantCounts(gol))

ncolumns

[1] 8

grp <- rep(c(1,2), each = ncolumns/2)

p <- plotFreqHeatmap(gol, top.n = 3, group = grp, as.percent = FALSE)

Warning in min(xranges): no non-missing arguments to min; returning Inf

Warning in max(xranges): no non-missing arguments to max; returning -Inf

Warning in max(yranges): no non-missing arguments to max; returning -Inf

Warning: Vectorized input to `element_text()` is not officially supported.

Results may be unexpected or may change in future versions of ggplot2.

p + labs(title = "B. coloured X labels with tiles coloured by count")

8

3

0

0

6

4

0

1

9

8

0

0

8

8

0

0

9

0

0

3

9

5

0

3

15

3

12

0

13

7

0

02:24I

−38:38D

−3:3D

Total

go
l F

1
cr

is
pa

nt
 1

go
l F

1
cr

is
pa

nt
 2

go
l F

1
cr

is
pa

nt
 3

go
l F

1
cr

is
pa

nt
 4

go
l F

1
cr

is
pa

nt
 5

go
l F

1
cr

is
pa

nt
 6

go
l F

1
cr

is
pa

nt
 7

go
l F

1
cr

is
pa

nt
 8

Count

0

3

6

9

12

B. coloured X labels with tiles coloured by count

Figure 4: plotFreqHeatmap with X-axis labels coloured by experimental group and tiles coloured by count
instead of proportion

26

CrispRVariants User Guide

The default colours are designed to be readable on a white background and colour-blind safe.
These can be changed by supplying a vector of colours for each level of the group. Colours
must be supplied if there are more than 7 experimental groups.
grp_clrs <- c("red", "purple")

p <- plotFreqHeatmap(gol, top.n = 3, group = grp, group.colours = grp_clrs,

type = "proportions", header = "counts",

legend.position = "bottom")

Warning in min(xranges): no non-missing arguments to min; returning Inf

Warning in max(xranges): no non-missing arguments to max; returning -Inf

Warning in max(yranges): no non-missing arguments to max; returning -Inf

Warning: Vectorized input to `element_text()` is not officially supported.

Results may be unexpected or may change in future versions of ggplot2.

p <- p + labs(title = "C. Modified plotFreqHeatmap")

p

8
37.5

0
0

6
66.67

0
16.67

9
88.89

0
0

8
100
0
0

9
0
0

33.33

9
55.56

0
33.33

15
20
80
0

13
53.85

0
02:24I

−38:38D

−3:3D

Total

go
l F

1
cr

is
pa

nt
 1

go
l F

1
cr

is
pa

nt
 2

go
l F

1
cr

is
pa

nt
 3

go
l F

1
cr

is
pa

nt
 4

go
l F

1
cr

is
pa

nt
 5

go
l F

1
cr

is
pa

nt
 6

go
l F

1
cr

is
pa

nt
 7

go
l F

1
cr

is
pa

nt
 8

Percentage 0 25 50 75 100

C. Modified plotFreqHeatmap

Figure 5: plotFreqHeatmap with labels showing allele proportions, header showing counts per sample and
modified legend position.

6.3.5 Controlling the appearance of the legend

The legend position is controlled via the plotFreqHeatmap argument legend.position, which
is passed to ggplot2::theme. Similarly legend.key.height controls the height of the legend.
See the ggplot docs for more information.
plotFreqHeatmap(gol, top.n = 3,

legend.key.height = ggplot2::unit(1.5, "lines"))

Warning in min(xranges): no non-missing arguments to min; returning Inf

Warning in max(xranges): no non-missing arguments to max; returning -Inf

Warning in max(yranges): no non-missing arguments to max; returning -Inf

27

http://docs.ggplot2.org/current/theme.html

CrispRVariants User Guide

8

3

0

0

6

4

0

1

9

8

0

0

8

8

0

0

9

0

0

3

9

5

0

3

15

3

12

0

13

7

0

02:24I

−38:38D

−3:3D

Total

go
l F

1
cr

is
pa

nt
 1

go
l F

1
cr

is
pa

nt
 2

go
l F

1
cr

is
pa

nt
 3

go
l F

1
cr

is
pa

nt
 4

go
l F

1
cr

is
pa

nt
 5

go
l F

1
cr

is
pa

nt
 6

go
l F

1
cr

is
pa

nt
 7

go
l F

1
cr

is
pa

nt
 8

Percentage

0

25

50

75

100

An additional example where the legend is placed at the bottom is shown above in plot C
named “Modified plotFreqHeatmap” above.

6.3.6 Further customisation

The function variantCounts returns a matrix of allele counts or proportions which can be
passed to plotFreqHeatmap. variantCounts allows filtering by number of alleles or allele
frequency. When passing plotFreqHeatmap a matrix instead of a CrisprSet, a header vector
can also be supplied. If no header is supplied, the header is the column sums.
var_counts <- variantCounts(gol, top.n = 3)

(additional modifications to var_counts can be added here)

plotFreqHeatmap(var_counts)

6.4 barplotAlleleFreqs
barplotAlleleFreqs includes two different colour schemes - a default rainbow scheme and a
blue-red gradient. Note that the transcript database txdb must be passed by name as this
function accepts ellipsis arguments.
Here barplotAlleleFreqs is run with the default parameters:
barplotAlleleFreqs(crispr_set, txdb = txdb)

Looking up variant locations

Loading required namespace: VariantAnnotation

'select()' returned many:1 mapping between keys and columns

'select()' returned many:1 mapping between keys and columns

Classifying variants

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots may not

work as expected with S4 functions

28

CrispRVariants User Guide

control

ptena 4

ptena 3

ptena 2

ptena 1

0.00 0.25 0.50 0.75 1.00

no variant

Chimeric

inframe indel < 10

frameshift indel < 10

4

7

5

5

8

2

2

2

3

2

A
lle

le
s

S
eq

ue
nc

es

In this case barplotAlleleFreqs is run with the alternative palette.
barplotAlleleFreqs(crispr_set, txdb = txdb, palette = "bluered")

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots may not

work as expected with S4 functions

control

ptena 4

ptena 3

ptena 2

ptena 1

0.00 0.25 0.50 0.75 1.00

no variant

Chimeric

inframe indel < 10

frameshift indel < 10

4

7

5

5

8

2

2

2

3

2

A
lle

le
s

S
eq

ue
nc

es

By default, a table of the number of sequences and alleles is plotted next to the barplot. This
can be switched off. In this case, barplotAlleleFreqs will return an ggplot object, allowing
further alteration of the appearance through the usual ggplot2::theme settings.
barplotAlleleFreqs(crispr_set, txdb = txdb, include.table = FALSE)

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots may not

work as expected with S4 functions

control

ptena 4

ptena 3

ptena 2

ptena 1

0.00 0.25 0.50 0.75 1.00

no variant

Chimeric

inframe indel < 10

frameshift indel < 10

barplotAlleleFreqs.CrisprSet uses VariantAnnotation::locateVariants to look up the
variant locations with respect to a transcript database. The default behaviour of barplotAl
leleFreqs.matrix is to perform a naive classification of the variants as frameshift or non-
frameshift by size. This approach ignores transcript scructure, but can be useful to give a
faster overview, or in cases where the transcript structure is unknown.
var_counts <- variantCounts(crispr_set)

barplotAlleleFreqs(var_counts)

29

CrispRVariants User Guide

control

ptena 4

ptena 3

ptena 2

ptena 1

0.00 0.25 0.50 0.75 1.00

no variant

Other

inframe indel ≤ 9

frameshift indel < 9

4

7

5

5

8

2

4

2

4

2

A
lle

le
s

S
eq

ue
nc

es

If the parameter classify is set to FALSE, the variants are plotted with no further aggregation.
If there are more than seven variants, colours must be provided.
rainbowPal10 <- c("#781C81","#3F479B",

"#4277BD","#529DB7",

"#62AC9B","#86BB6A",

"#C7B944","#E39C37",

"#E76D2E","#D92120")

barplotAlleleFreqs(var_counts, classify = FALSE, bar.colours = rainbowPal10)

control

ptena 4

ptena 3

ptena 2

ptena 1

0.00 0.25 0.50 0.75 1.00

no variant

−1:4D

6:1D

1:7I

1:1I

1:2I,3:5I

−2:4D

2:1D,4:5I

Other

4

7

5

5

8

2

4

2

4

2

A
lle

le
s

S
eq

ue
nc

es

An arbitrary classification can also be used. CrispRVariants provides some utility functions
to assist in classifying variants. Note that methods of the CrisprSet class are accessed with
crisprSet$function() rather than function(crisprSet).
Here are some examples of variant classification:
Classify variants as insertion/deletion/mixed

byType <- crispr_set$classifyVariantsByType()

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots may not

work as expected with S4 functions

byType

no variant -1:4D 6:1D

"no variant" "deletion" "deletion"

1:7I 1:1I 1:2I,3:5I

"insertion" "insertion" "multiple insertions"

-2:4D 2:1D,4:5I Other

"deletion" "insertion/deletion" "Other"

Classify variants by their location, without considering size

byLoc <- crispr_set$classifyVariantsByLoc(txdb=txdb)

Looking up variant locations

'select()' returned many:1 mapping between keys and columns

'select()' returned many:1 mapping between keys and columns

30

CrispRVariants User Guide

Classifying variants

Warning in dispatchDots(.self$.getFilteredCigarTable, ...): dispatchDots may not

work as expected with S4 functions

byLoc

no variant -1:4D 6:1D 1:7I 1:1I 1:2I,3:5I

"no variant" "coding" "coding" "coding" "coding" "coding"

-2:4D 2:1D,4:5I Other

"coding" "coding" "Other"

Coding variants can then be classified by setting a size cutoff

byLoc <- crispr_set$classifyCodingBySize(byLoc, cutoff = 6)

byLoc

no variant -1:4D 6:1D

"no variant" "frameshift indel < 6" "frameshift indel < 6"

1:7I 1:1I 1:2I,3:5I

"frameshift indel > 6" "frameshift indel < 6" "frameshift indel > 6"

-2:4D 2:1D,4:5I Other

"frameshift indel < 6" "inframe indel > 6" "Other"

Combine filtering and variant classification, using barplotAlleleFreqs.matrix

vc <- variantCounts(crispr_set)

Select variants that occur in at least two samples

keep <- names(which(rowSums(vc > 0) > 1))

keep

[1] "no variant" "6:1D" "Other"

Use this classification and the selected variants

barplotAlleleFreqs(vc[keep,], category.labels = byLoc[keep])

control

ptena 4

ptena 3

ptena 2

ptena 1

0.00 0.25 0.50 0.75 1.00

no variant Other frameshift indel < 9

3

4

5

2

8

1

1

2

2

2

A
lle

le
s

S
eq

ue
nc

es

6.4.1 Other modifications

plotAlignments and plotFreqHeatmap both return ggplot objects, which can be adjusted via
theme(). For example, to decrease the space between the legend and the plot:
p <- plotAlignments(gol, top.n = 3)

p + theme(legend.margin = ggplot2::unit(0, "cm"))

Warning: `legend.margin` must be specified using `margin()`. For the old

behavior use legend.spacing

31

CrispRVariants User Guide

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

T

−

T

T

G

−

G

G

G

−

G

G

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

T

−

T

T

C

−

C

C

G

−

G

G

C

−

C

C

A

−

A

A

G

−

G

G

G

−

G

G

A

−

A

A

T

−

−

T

G

−

−

G

G

−

−

T

T

T

T

T

G

G

G

G

A

C

C

C

T

T

T

T

G

G

G

G

G

G

G

G

A

A

A

A

G

G

G

G

C

C

C

C

C

C

C

C

A

A

A

A

2:24I

−38:38D

−3:3D

Reference

−20 −15 −10 −5 −1 1 5 10

24I (4 common alleles)

7 Using CrispRVariants plotting functions indepen-
dently
The CrispRVariants plotting functions are intended to be used within a typical CrispRVariants
pipeline, where the correct arguments are extracted from a CrisprSet object. However, with
some data formatting, it is also possible to use these functions with standard R objects.
An example adapting CrispRVariants::plotVariants to display pairwise align-
ments can be found in the code accompanying the CrispRVariants paper: https:
//github.com/markrobinsonuzh/CrispRvariants_manuscript

7.1 Plot the reference sequence
Processing large data with CrispRVariants requires some time. It can be useful to first
plot the reference sequence to check that the intended target location is specified. Here
we use the reference sequence from the gol data set included in CrispRVariants. Any
Biostrings::DNAString can be used. Note that CrispRVariants::plotAlignments accepts elliptical
arguments in its signature, so non-signature arguments must be supplied by name. The code
below shows the minimum arguments required for running CrispRVariants::plotAlignments.

Get a reference sequence

library("CrispRVariants")

data("gol_clutch1")

ref <- gol$ref

#Then to make the plot:

plotAlignments(ref, alns = NULL, target.loc = 22, ins.sites = data.frame())

G T C T T G G T C T C T C G C A G G A T G T T G C T G G A G C C AReference

10 20 30

8 Note about handling of large deletions
BWA reports deletions above a threshold length as “chimeric” reads, with separate entries in
the bam file for each mapped segment. By default, CrispRVariants only counts chimeric
reads where one mapped endpoint is near the cut site. This setting was chosen as we observed
long chimeric deletions in both on- and off-target CRISPR amplicon sequencing experiments

32

https://github.com/markrobinsonuzh/CrispRvariants_manuscript
https://github.com/markrobinsonuzh/CrispRvariants_manuscript

CrispRVariants User Guide

in several independent data sets. The mapped endpoints were more likely to be in the vicinity
of the cut site in on-target experiments. The off-target experiments did not have the other
mutant alleles we expect to see if the long deletions are genuine CRISPR-induced variants.
Some of the chimeric reads we observed appeared to be primer dimers. See the supplementary
material of the CrispRVariants paper for more details:
Lindsay H, Burger A, Biyong B, Felker A, Hess C, Zaugg J, Chiavacci E, Anders C, Jinek M,

Mosimann C and Robinson MD (2016). “CrispRVariants charts the mutation spectrum of genome

engineering experiments.” Nature Biotechnology, 34, pp. 701-702. doi: 10.1038/nbt.3628.

The default chimera setting prioritises avoiding false positives such as primer dimers at the
expense of potentially missing some genuine variants. This can be changed during initialisation
by setting the chimera.to.target parameter to a large value.
library(Biostrings)

library(CrispRVariants)

library(rtracklayer)

This is a small, manually generated data set with a variety of different mutations

bam_fname <- system.file("extdata", "cntnap2b_test_data_s.bam",

package = "CrispRVariants")

guide_fname <- system.file("extdata", "cntnap2b_test_data_guide.bed",

package = "CrispRVariants")

guide <- rtracklayer::import(guide_fname)

guide <- guide + 5

reference <- Biostrings::DNAString("TAGGCGAATGAAGTCGGGGTTGCCCAGGTTCTC")

cset <- readsToTarget(bam_fname, guide, reference = reference, verbose = FALSE,

name = "Default")

cset2 <- readsToTarget(bam_fname, guide, reference = reference, verbose = FALSE,

chimera.to.target = 100, name = "Including long dels")

default_var_counts <- variantCounts(cset)

print(default_var_counts)

cntnap2b_test_data_s.bam

no variant 6

SNV:6G 1

3:10I 2

6:3D 1

4:3D 1

-9:2D 1

-25:58D 1

4:26D 1

6:7D 1

6:3I 1

4:3I 1

5:20I 1

4:2D 1

print(c("Total number of reads: ", colSums(default_var_counts)))

cntnap2b_test_data_s.bam

"Total number of reads: " "19"

33

CrispRVariants User Guide

With chimera.to.target = 100, an additional read representing a large deletion is

reported in the "Other" category.

var_counts_inc_long_dels <- variantCounts(cset2)

print(var_counts_inc_long_dels)

cntnap2b_test_data_s.bam

no variant 6

SNV:6G 1

3:10I 2

6:3D 1

4:3D 1

-9:2D 1

-25:58D 1

4:26D 1

6:7D 1

6:3I 1

4:3I 1

5:20I 1

4:2D 1

Other 1

print(c("Total number of reads: ", colSums(var_counts_inc_long_dels)))

cntnap2b_test_data_s.bam

"Total number of reads: " "20"

This alignment can be viewed using `plotChimeras`

ch <- getChimeras(cset2, sample = 1)

plotChimeras(ch, annotations = cset2$target)

cntnap2b

50866353

50866360

50866380

50866387

50866560

50866580

50866590

1 21 41 61

Read location

C
hr

om
os

om
al

 lo
ca

tio
n

Chromosome

chr2

34

	1 Introduction
	2 Quickstart
	3 Case study: Analysis of ptena mutant spectrum in zebrafish
	3.1 Convert AB1-format Sanger sequences to FASTQ
	3.2 Map the FASTQ reads
	3.3 List the BAM files
	3.4 Create the target location and reference sequence
	3.5 Creating a CrisprSet
	3.6 Creating summary plots of variants
	3.7 Calculating the mutation efficiency
	3.8 Get consensus alleles
	3.9 Plot chimeric alignments

	4 Choosing the strand for display
	5 Multiple guides
	6 Changing the appearance of plots
	6.1 Filtering data in plotVariants
	6.2 plotAlignments
	6.3 plotFreqHeatmap
	6.4 barplotAlleleFreqs

	7 Using CrispRVariants plotting functions independently
	7.1 Plot the reference sequence

	8 Note about handling of large deletions

