chromstaR-package |
Combinatorial and differential chromatin state analysis for ChIP-seq data |
bin2dec |
Conversion of decimal and binary states |
binned.data |
Binned read counts |
binning |
Convert aligned reads from various file formats into read counts in equidistant bins |
binReads |
Convert aligned reads from various file formats into read counts in equidistant bins |
callPeaksMultivariate |
Fit a Hidden Markov Model to multiple ChIP-seq samples |
callPeaksReplicates |
Fit a multivariate Hidden Markov Model to multiple ChIP-seq replicates |
callPeaksUnivariate |
Fit a Hidden Markov Model to a ChIP-seq sample. |
callPeaksUnivariateAllChr |
Fit a Hidden Markov Model to a ChIP-seq sample. |
changeFDR |
Adjust sensitivity of peak detection |
changeMaxPostCutoff |
Adjust sensitivity of peak detection |
changePostCutoff |
Change the posterior cutoff of a Hidden Markov Model |
Chromstar |
Wrapper function for the 'chromstaR' package |
chromstaR |
Combinatorial and differential chromatin state analysis for ChIP-seq data |
chromstaR-objects |
chromstaR objects |
collapseBins |
Collapse consecutive bins |
combinatorialStates |
Get the (decimal) combinatorial states of a list of univariate HMM models |
combinedHMM |
Combined multivariate HMM object |
combinedMultiHMM |
Combined multivariate HMM object |
combineMultivariates |
Combine combinatorial states from several Multivariates |
conversion |
Conversion of decimal and binary states |
dec2bin |
Conversion of decimal and binary states |
differentialScoreMax |
chromstaR scores |
differentialScoreSum |
chromstaR scores |
dzinbinom |
The Zero-inflated Negative Binomial Distribution |
enrichmentAtAnnotation |
Enrichment of (combinatorial) states for genomic annotations |
enrichment_analysis |
Enrichment analysis |
experiment.table |
Experiment data table |
exportCombinations |
Export genome browser uploadable files |
exportCounts |
Export genome browser uploadable files |
exportFiles |
Export genome browser uploadable files |
exportGRangesAsBedFile |
Export genome browser viewable files |
exportPeaks |
Export genome browser uploadable files |
fixedWidthBins |
Make fixed-width bins |
genes_rn4 |
Gene coordinates for rn4 |
genomicFrequencies |
Frequencies of combinatorial states |
getCombinations |
Get combinations |
getDistinctColors |
Get distinct colors |
getStateColors |
Get state colors |
heatmapCombinations |
Plot a heatmap of combinatorial states |
heatmapCountCorrelation |
Read count correlation heatmap |
heatmapTransitionProbs |
Heatmap of transition probabilities |
loadHmmsFromFiles |
Load 'chromstaR' objects from file |
mergeChroms |
Merge several 'multiHMM's into one object |
model.combined |
Combined multivariate HMM for demonstration purposes |
model.multivariate |
Multivariate HMM for demonstration purposes |
model.univariate |
Univariate HMM for demonstration purposes |
multi.hmm |
Multivariate HMM object |
multiHMM |
Multivariate HMM object |
multivariateSegmentation |
Multivariate segmentation |
plotEnrichCountHeatmap |
Enrichment analysis |
plotEnrichment |
Enrichment analysis |
plotExpression |
Overlap with expression data |
plotFoldEnrichHeatmap |
Enrichment analysis |
plotGenomeBrowser |
#' Plot a genome browser view #' #' Plot a simple genome browser view. This is useful for scripted genome browser snapshots. #' #' @param counts A 'GRanges-class' object with meta-data column 'counts'. #' @param peaklist A named list() of 'GRanges-class' objects containing peak coordinates. #' @param chr,start,end Chromosome, start and end coordinates for the plot. #' @param countcol A character giving the color for the counts. #' @param peakcols A character vector with colors for the peaks in 'peaklist'. #' @param style One of 'c('peaks', 'density')'. #' @param peakTrackHeight Relative height of the tracks given in 'peaklist' compared to the 'counts'. #' @return A 'ggplot' object. #' @examples #'## Get an example multiHMM ## #'file <- system.file("data","multivariate_mode-combinatorial_condition-SHR.RData", #' package="chromstaR") #'model <- get(load(file)) #'## Plot genome browser snapshot #'bins <- model$bins #'bins$counts <- model$bins$counts.rpkm[,1] #'plotGenomeBrowser(counts=bins, peaklist=model$peaks, #' chr='chr12', start=1, end=1e6) #' plotGenomeBrowser2 <- function(counts, peaklist=NULL, chr, start, end, countcol='black', peakcols=NULL, style='peaks', peakTrackHeight=5) ## Select ranges to plot ranges2plot <- reduce(counts[counts@seqnames == chr & start(counts) >= start & start(counts) <= end]) ## Counts counts <- subsetByOverlaps(counts, ranges2plot) if (style == 'peaks') df <- data.frame(x=(start(counts)+end(counts))/2, counts=counts$counts) # plot triangles centered at middle of the bin ggplt <- ggplot(df) + geom_area(aes_string(x='x', y='counts')) + theme(panel.grid = element_blank(), panel.background = element_blank(), axis.text.x = element_blank(), axis.title = element_blank(), axis.ticks.x = element_blank(), axis.line = element_blank()) maxcounts <- max(counts$counts) ggplt <- ggplt + scale_y_continuous(breaks=c(0, maxcounts)) else if (style == 'density') df <- data.frame(xmin=start(counts), xmax=end(counts), counts=counts$counts) ggplt <- ggplot(df) + geom_rect(aes_string(xmin='xmin', xmax='xmax', ymin=0, ymax=4, alpha='counts')) + theme(panel.grid = element_blank(), panel.background = element_blank(), axis.text = element_blank(), axis.title = element_blank(), axis.ticks = element_blank(), axis.line = element_blank()) else stop("Unknown value '", style, "' for parameter 'style'. Must be one of c('peaks', 'density').") ## Peaks if (!is.null(peaklist)) if (is.null(peakcols)) peakcols <- getDistinctColors(length(peaklist)) for (i1 in 1:length(peaklist)) p <- peakTrackHeight peaks <- subsetByOverlaps(peaklist[[i1]], ranges2plot) if (length(peaks) > 0) df <- data.frame(start=start(peaks), end=end(peaks), ymin=-p*i1, ymax=-p*i1+0.9*p) ggplt <- ggplt + geom_rect(data=df, mapping=aes_string(xmin='start', xmax='end', ymin='ymin', ymax='ymax'), col=peakcols[i1], fill=peakcols[i1]) trackname <- names(peaklist)[i1] df <- data.frame(x=start(counts)[1], y=-p*i1+0.5*p, label=trackname) ggplt <- ggplt + geom_text(data=df, mapping=aes_string(x='x', y='y', label='label'), vjust=0.5, hjust=0.5, col=peakcols[i1]) return(ggplt) Plot a genome browser view |
plotHistogram |
Histogram of binned read counts with fitted mixture distribution |
plotHistograms |
Histograms of binned read counts with fitted mixture distribution |
plotting |
chromstaR plotting functions |
print.combinedMultiHMM |
Print combinedMultiHMM object |
print.multiHMM |
Print multiHMM object |
print.uniHMM |
Print uniHMM object |
pzinbinom |
The Zero-inflated Negative Binomial Distribution |
qzinbinom |
The Zero-inflated Negative Binomial Distribution |
readBamFileAsGRanges |
Import BAM file into GRanges |
readBedFileAsGRanges |
Import BED file into GRanges |
readConfig |
Read chromstaR configuration file |
readCustomBedFile |
Read bed-file into GRanges |
removeCondition |
Remove condition from model |
rzinbinom |
The Zero-inflated Negative Binomial Distribution |
scanBinsizes |
Find the best bin size for a given dataset |
scores |
chromstaR scores |
simulateMultivariate |
Simulate multivariate data |
simulateReadsFromCounts |
Simulate read coordinates |
simulateUnivariate |
Simulate univariate data |
state.brewer |
Obtain combinatorial states from specification |
stateBrewer |
Obtain combinatorial states from experiment table |
subsample |
Normalize read counts |
transitionFrequencies |
Transition frequencies of combinatorial states |
uni.hmm |
Univariate HMM object |
uniHMM |
Univariate HMM object |
unis2pseudomulti |
Combine univariate HMMs to a multivariate HMM |
variableWidthBins |
Make variable-width bins |
writeConfig |
Write chromstaR configuration file |
zinbinom |
The Zero-inflated Negative Binomial Distribution |