Negative binomial model for scRNA-seq


[Up] [Top]

Documentation for package ‘NewWave’ version 1.8.0

Help Pages

newAIC Compute the AIC of a model given some data
newAIC-method Compute the AIC of a model given some data
newAlpha Returns the matrix of paramters alpha
newAlpha-method Class newmodel
newBeta Returns the matrix of paramters beta
newBeta-method Class newmodel
newBIC Compute the BIC of a model given some data
newBIC-method Compute the BIC of a model given some data
newEpsilon_alpha Returns the vector of regularization parameter for alpha
newEpsilon_alpha-method Class newmodel
newEpsilon_beta Returns the vector of regularization parameter for beta
newEpsilon_beta-method Class newmodel
newEpsilon_gamma Returns the vector of regularization parameter for gamma
newEpsilon_gamma-method Class newmodel
newEpsilon_W Returns the vector of regularization parameter for W
newEpsilon_W-method Class newmodel
newEpsilon_zeta Returns the regularization parameter for the dispersion parameter
newEpsilon_zeta-method Class newmodel
newFit Fit a nb regression model
newFit-method Fit a nb regression model
newGamma Returns the matrix of paramters gamma
newGamma-method Class newmodel
newloglik Compute the log-likelihood of a model given some data
newloglik-method Compute the log-likelihood of a model given some data
newLogMu Returns the matrix of logarithm of mean parameters
newLogMu-method Class newmodel
newmodel Initialize an object of class newmodel
newmodel-class Class newmodel
newMu Returns the matrix of mean parameters
newMu-method Class newmodel
newpenalty Compute the penalty of a model
newpenalty-method Compute the penalty of a model
newPhi Returns the vector of dispersion parameters
newPhi-method Class newmodel
newSim Simulate counts from a negative binomial model
newSim-method Simulate counts from a negative binomial model
newTheta Returns the vector of inverse dispersion parameters
newTheta-method Class newmodel
newV Returns the gene-level design matrix for mu
newV-method Class newmodel
newW Returns the low-dimensional matrix of inferred sample-level covariates W
newW-method Class newmodel
newWave Perform dimensionality reduction using a nb regression model with gene and cell-level covariates.
newWave-method Perform dimensionality reduction using a nb regression model with gene and cell-level covariates.
newX Returns the sample-level design matrix for mu
newX-method Class newmodel
newZeta Returns the vector of log of inverse dispersion parameters
newZeta-method Class newmodel
numberFactors Generic function that returns the number of latent factors
numberFactors-method Class newmodel
numberFeatures Generic function that returns the number of features
numberFeatures-method Class newmodel
numberParams Generic function that returns the total number of parameters of the model
numberParams-method Generic function that returns the total number of parameters of the model
numberSamples Generic function that returns the number of samples
numberSamples-method Class newmodel
show-method Class newmodel