
Analysis of high-throughput microscopy-based
screens with imageHTS

Gregoire Pau, Xian Zhang, Michael Boutros, and Wolfgang
Huber
gregoire.pau@embl.de

November 8, 2022

Contents

1 Introduction . 2

2 Analysis of a microscopy-based screen 2

2.1 Initialization . 2

2.2 Cell segmentation . 3

2.3 Quantification of cell features 5

2.4 Prediction of cell classes . 7

2.5 Phenotype summarization . 8

2.6 Configuration files and complete script 9

3 Getting access to remote screen data 11

3.1 Initialization . 11

3.2 Inspecting data . 11

4 Session info . 15

mailto:gregoire.pau@embl.de

Analysis of high-throughput microscopy-based screens with imageHTS

1 Introduction
imageHTS is an R package dedicated to the analysis of high-throughput microscopy-based
screens. The package provides a modular and extensible framework to segment cells, extract
quantitative cell features, predict cell types and browse screen data through web interfaces.
Designed to operate in distributed environments, imageHTS provides a standardized access
to remote screen data, facilitating the dissemination of high-throughput microscopy-based
screens.
In the following, we first show how to use imageHTS to analyse a microscopy-based RNA
interference (RNAi) screen by automated cell segmentation and extraction of morphological
cell features. In a second example, we demonstrate how to access and analyse data from a
remote screen repository.

2 Analysis of a microscopy-based screen
The kimorph screen is an RNAi screen where HeLa cells were fixed 48 h after siRNA transfec-
tion and stained for DNA, tubulin and actin. The screen assays 800 siRNAs and is described
in [1]. In this section, we are analyzing a 12-well subset of this screen, of reduced image
quality (due to package size considerations), located in the inst/submorph directory of the
imageHTS package.

2.1 Initialization
In imageHTS, screen data files can be accessed in two locations: in a local repository, indicated
by localPath, or in an optional remote server designated by serverURL. If a file is not present
in the local repository, e.g. for storage capacity reasons, imageHTS automatically retrieves
the corresponding file from the remote server to the local repository. This dual repository
feature is useful when screen data is stored in a different location from where it is analysed.
After loading the package imageHTS, we initialize an imageHTS object with parseImageConf.
The function takes 3 arguments: an imageHTS configuration file and the variables localPath
and serverURL. The imageHTS configuration file, in DCF format, describes the general screen
configuration: where the microscopy images are located and how the plates and wells are
named. We are using the imageHTS configuration file shown in section 2.6. A detailed
description of the imageHTS configuration file can be found in the manual pages of parseIm
ageConf. We set the variable localPath to a temporary directory, for storing intermediate
analysis files. The variable serverURL can point either to a directory or an external URL.
In the following example, serverURL points to the submorph screen data directory of the
imageHTS package, which contains the source images acquired from the microscope.
> library('imageHTS')

> localPath = tempdir()

> serverURL = system.file('submorph', package='imageHTS')

> x = parseImageConf('conf/imageconf.txt', localPath=localPath,

+ serverURL=serverURL)

File "conf/imageconf.txt" read.

Number of plates= 1

Number of replicates= 2

2

Analysis of high-throughput microscopy-based screens with imageHTS

Number of wells= 384

Number of channels= 3

Number of spots= 1

The imageHTS object x is now instantiated. The function configure configures the screen
by providing the screen description, the plate configuration layout (how sample, control
and empty wells are located in the plates) and the screen log. The function annotate

sets up the mapping between reagents and gene targets. Both functions originate from the
package cellHTS2, dedicated to the analysis of low-content RNAi screens [2]. The imageHTS
class extends the cellHTS class and both functions are fully compatible with their cellHTS2
counterparts. See cellHTS2 documentation for details.
> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt',

+ 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

In imageHTS, each well is uniquely referred by an unique ID. Well unique IDs are generated
by the function getUnames, which can filter wells according to their plate, replicate, row,
column or content type (as described in the plate configuration file). The following example
enumerates the wells that are not empty.
> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> unames

[1] "001-01-A03" "001-01-A05" "001-01-B03" "001-01-B05" "001-01-C03"

[6] "001-01-D03" "001-02-A03" "001-02-A05" "001-02-B03" "001-02-B05"

[11] "001-02-C03" "001-02-D03"

12 wells are non-empty in this screen. Metadata (plate, replicate, content, gene target,
annotation) about the wells is retrieved using the function getWellFeatures.
> getWellFeatures(x, unames[1:3])

plate well controlStatus PlateName Content siRNAID GeneID

001-01-A03 1 A03 ubc P1 control <NA> UBC

001-01-A05 1 A05 sample P1 sample M-005300-00 AAK1

001-01-B03 1 B03 ubc P1 control <NA> UBC

LocusID Accession

001-01-A03 <NA> <NA>

001-01-A05 22848 NM_014911

001-01-B03 <NA> <NA>

2.2 Cell segmentation
Cells present in wells can be segmented using the function segmentWells. segmentWells is a
high-level function that takes a vector of unique well IDs and a DCF segmentation parameter
file. segmentWells uses the low-level segmentation function indicated by the field seg.method

of the segmentation parameter file to segment individual well images. For each well, segmen
tWells writes in the local directory: calibrated image data ’cal’, segmentation data ’seg’ and
several JPEG images. Files can be accessed later on with the functions fileHTS and readHTS,
as shown in the sequel.

3

Analysis of high-throughput microscopy-based screens with imageHTS

If an unique well is given, segmentWells returns a list of three images: a calibrated image, a
nucleus mask and a cell mask. The images can be manipulated with the package EBImage [3]
and visualized using the command display. The function highlightSegmentation merges
the calibrated image, the nucleus and cell masks to produce a composite image that highlights
the segmentation information.
In the following, we segment the third negative control well rluc using the segmentation
parameter file shown in section 2.6. The field seg.method of the file indicates the function
segmentATH to segment the well. This function is specifically designed to segment cells stained
for DNA and cytoskeletal proteins but any other segmentation function can be used, e.g. for
segmenting yeast cells in bright field images or segmenting organelles stained with specific
markers.
> uname = getUnames(x, content='rluc')[3]

> print(uname)

[1] "001-02-C03"

> y = segmentWells(x, uname=uname,

+ segmentationPar='conf/segmentationpar.txt')

001-02-C03: rccussfs nbcells=88 OK

> display(y$cal)

> hseg = highlightSegmentation(0.6*ycal, ynseg, y$cseg, thick=TRUE)

> display(hseg)

Figure 1: Calibrated image ’y$cal’ from well ’001-02-C03’.

Segmentation of the full screen is done with the following commands and takes about 4
minutes with a single processor. Since wells can be segmented independently from each
other, segmentation of the full screen can be easily parallelized using many processors. The
following example is not run in this vignette, due to time constraints.
> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> segmentWells(x, unames, 'conf/segmentationpar.txt')

4

Analysis of high-throughput microscopy-based screens with imageHTS

Figure 2: Segmented image ’hseg’ from well ’001-02-C03’. Cell nucleus is highlighted in yellow and cell
membrane is indicated in magenta.

In imageHTS, all screen data files can be accessed through the function fileHTS, including
configuration files, source images, segmentation data, cell features and JPEG images. file

HTS creates paths pointing to screen data files, using a standardized naming scheme. The
following example shows, for the well indicated by uname, how to get access to first channel
of the source image, calibrated image data, and the JPEG image of the well.
> fileHTS(x, type='source', uname=uname, channel=1)

[1] "/private/tmp/RtmpwXB5UI/source/PK-11B-pl1/Well-C003/Tritc.jpeg"

> fileHTS(x, type='seg', uname=uname)

[1] "/private/tmp/RtmpwXB5UI/data/001-02/001-02-C03_seg.rda"

> fileHTS(x, type='viewfull', uname=uname)

[1] "/private/tmp/RtmpwXB5UI/view/001-02/001-02-C03_full.jpeg"

2.3 Quantification of cell features
Quantification of cell features is done by the high-level function extractFeatures on a set of
wells, using a feature parameter file. Similar to the function segmentWells, extractFeatures
uses the function indicated by the field extractfeatures.method of the feature parameter file
to extract cell features. For each well, extractFeatures writes features in the local directory,
in tab-separated format. In the following example, we extract cell features from the well
indicated by uname, using the feature parameter file shown in section 2.6.
> extractFeatures(x, uname, 'conf/featurepar.txt')

001-02-C03: gmbhc OK

Cell features can be accessed using the function fileHTS, as described above. However, for
convenience purposes, the function readHTS combines fileHTS and reads the corresponding
file, according to the specified format (here, tab-separated). The following example reads the
cell feature matrix of well ’001-02-C03’.

5

Analysis of high-throughput microscopy-based screens with imageHTS

> y = readHTS(x, type='ftrs', uname=uname, format='tab')

> dim(y)

[1] 88 293

> y[1:10, 1:7]

spot id c.s.area c.s.perimeter c.s.radius.mean c.s.radius.sd c.s.radius.min

1 1 1 3214 317 33.82418 8.647554 13.78002

2 1 2 2205 183 26.59331 5.793902 11.99122

3 1 3 1693 171 24.15556 5.847740 12.15843

4 1 4 4560 323 39.69377 7.712418 26.55506

5 1 5 3363 296 33.96740 8.939805 19.10263

6 1 6 3513 246 35.24268 8.472181 19.57477

7 1 7 5111 310 40.48104 7.407180 26.45049

8 1 8 4199 312 37.14185 5.575376 27.07191

9 1 9 3931 330 38.06178 12.982466 18.37205

10 1 10 5815 365 43.39953 5.527656 31.82344

88 cells are present in the well and each cell is described with 293 features. Cell features in-
clude geometrical features, moment-based features, Haralick moments and Zernicke features.
Cell features are described in the manual pages of the function getFeatures of the package
EBImage. Some features have a direct interpretation, such as c.s.area, which measures the
cell area or c.t.b.mean, which quantifies the cell tubulin mean intensity. In the following
example, we display the distribution of the latter within the cells of the well, and identify the
cells that have a tubulin intensity higher than 1600.
> ctub <- y$c.t.b.mean*y$c.s.area

> hist(ctub, 20, xlab='Cell tubulin intensity (a.u.)', main='')

> abline(v=1600, col=2)

> cellid = which(ctub>1600)

> print(cellid)

[1] 2 8 10 15 72

Cell tubulin intensity (a.u.)

F
re

qu
en

cy

500 1000 1500 2000 2500

0
2

4
6

8
10

12

Figure 3: Distribution of cell tubulin intensity in cells of well ’001-02-C03’.

6

Analysis of high-throughput microscopy-based screens with imageHTS

Five cells have a tubulin content higher than 1600. Since rows of cell feature matrix are
synchronised with cell indexes in segmentation masks, cells can be easily traced back by
loading the segmentation information, as shown in the following example.
> cal = readHTS(x, type='cal', uname=uname, format='rda')

> seg = readHTS(x, type='seg', uname=uname, format='rda')

> cseg = rmObjects(seg$cseg, setdiff(1:nrow(y), cellid))

> hightub = highlightSegmentation(0.6*cal, cseg=cseg, thick=TRUE)

> display(hightub)

Figure 4: Cells of well ’001-02-C03’ having a tubulin intensity higher than 1600.

2.4 Prediction of cell classes
Cell features can be used as covariates to classify cells, using supervised learning and a set of
manually annotated cells. The function readLearnTS takes as arguments a training set file and
the feature parameter file, previously used in extractFeatures. The training set is a list of la-
belled cells and the feature parameter file contains the field remove.classification.features,
indicating the features that should not be used during training/classification (e.g. cell posi-
tion). Construction of the training set is done using the annotation web module cellPicker
as described in the section 3.2.
The function readLearnTS uses a Support Vector Machine with a radial kernel to predict cell
labels. Training is done by parameter grid-search and 5-fold cross-validation, to minimize
classification error. The function creates the file data/classifier.rda, which contains the
trained classifier. The following example trains a cell classifier, but is not run in the vignette
due to time constraints.
> set.seed(1)

> readLearnTS(x, 'conf/featurepar.txt', 'conf/trainingset.txt')

After training, prediction of cell labels is done by the function predictCellLabels. The
function writes for each well a vector of predicted cell labels. The following example predicts
the cell labels of the well ’01-02-C03’, using a classifier previously trained on a set of 66 cells
labelled with 3 cell classes: I (interphase), M (mitotic) and D (debris).

7

Analysis of high-throughput microscopy-based screens with imageHTS

> predictCellLabels(x, uname)

001-02-C03: D=18 I=67 M=3 OK

67 interphase, 3 mitotic and 18 debris cells were predicted in the image. The following
example retrieves and displays the predicted cell labels.
> clab = readHTS(x, type='clabels', uname=uname, format='tab')

> labid = split(1:nrow(clab), clab$label)

> inter = seg$cseg%in%labid$I

> mito = seg$cseg%in%labid$M

> debris = seg$cseg%in%labid$D

> dc = Image(c(inter+mito, inter, debris+inter), colormode='Color',

+ dim=c(dim(seg$cseg)[1:2], 3))

> dc = highlightSegmentation(0.5*dc+0.2*drop(cal), cseg=seg$cseg,

+ thick=TRUE)

> display(dc)

Figure 5: Predicted cell labels (grey: interphase, red: mitotic, blue: debris) in well ’001-02-C03’.

Overall prediction is very good, except for few cells. Classification performance can be easily
improved by enlarging the training set and re-run the training and predicting steps. The
cellPicker web module, described in section 3.2, has an interactive cell annotation interface
which is very useful to refine the training set.

2.5 Phenotype summarization
Cell population features are summarized by summarizeWells. The function computes for each
well a phenotypic profile, which summarizes cell population features. Currently, a phenotypic
profile consist of: cell number n, median cell feature med.* (for each feature) and cell class
ratios. summarizeWells creates the file data/profiles.tab which contains the phenotypic
profiles. The following example computes the phenotypic profiles of all the wells, but is not
run in the vignette due to time constraints.
> summarizeWells(x, unames, 'conf/featurepar.txt')

8

Analysis of high-throughput microscopy-based screens with imageHTS

In the following example, the phenotypic profiles (previously computed and stored in the
imageHTS package) are loaded with readHTS and averaged by well type. Only the following
features are considered: n (cell number), med.c.s.area (median cell size), med.c.t.b.mean
(median cell tubulin density), M (mitotic cell fraction) and D (debris cell fraction).
> profiles = readHTS(x, type='file', filename='data/profiles.tab',

+ format='tab')

> wfcontent =

+ factor(as.character(getWellFeatures(x, unames)$controlStatus))

> table(wfcontent)

wfcontent

rluc sample ubc

4 4 4

> zwf = split(1:nrow(profiles), wfcontent)

> ft = c('n', 'med.c.s.area', 'med.c.t.b.mean', 'M', 'D')

> avef = do.call(rbind,

+ lapply(zwf, function(z) colMeans(profiles[z, ft])))

> print(avef)

n med.c.s.area med.c.t.b.mean M D

rluc 99.00 2446.750 0.2496445 0.010388399 0.1573825

sample 86.75 2793.375 0.2324918 0.031074095 0.1455122

ubc 26.75 1576.250 0.4220933 0.005813953 0.7868731

There are 4 rluc negative controls, 4 ubc positive controls and 4 sample wells in this screen.
The average number of cells in ubc wells is 26.75, lower than in rluc wells, 99.00. Moreover,
the average fraction of debris cells in ubc wells, 0.79, is higher than in rluc wells, 0.16.
A larger number of replicates and proper statistical testing would be needed to determine
whether the observed changes are statistically significant.

2.6 Configuration files and complete script
Configurations files used in this vignette are reproduced in this section. Since the files are
part of the screen data, they can be read using fileHTS. In the following example, we display
the imageHTS configuration file, the segmentation parameter file and the feature parameter
file.
> f = fileHTS(x, 'file', filename='conf/imageconf.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

AssayName: submorph

SourceFilenamePattern: source/PK-{replicate}B-pl{plate}/Well-{row}0{col}/{channel}.jpeg

PlateNames: 1

ReplicateNames: 10, 11

RowNames: A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P

ColNames: 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24

ChannelNames: Tritc, FITC, Hoechst

> f = fileHTS(x, 'file', filename='conf/segmentationpar.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

9

Analysis of high-throughput microscopy-based screens with imageHTS

seg.method: segmentATH

nuc.athresh.filter: makeBrush(35, shape='box')/(35*35)

nuc.athresh.t: 0.00424

nuc.morpho.kernel: makeBrush(3, shape='diamond')

nuc.watershed.tolerance: 3

nuc.watershed.neighbourood: 2

nuc.min.density: 0.1

nuc.min.size: 125.0625

nuc.max.size: 2070.25

adj.a: 2.82*a - 0.17

adj.t: 5.03*t - 0.35

adj.h: 2.99*h - 0.15

cell.thresh.filter: matrix(c(0,1,0,1,2,1,0,1,0)/6,nc=3,nr=3)

cell.thresh.t: 0.12

cell.morpho.kernel: makeBrush(3, shape='diamond')

cell.propagate.lambda: 0.0001

cell.propagate.mix.power: 0.2

cell.min.density: 0.1

cell.max.edgepratio: 0.3

cell.min.size: 150.0625

cell.max.size: 14491.75

cell.max.perimeter: 769.3

thumbnail.crop: 100, 600, 200, 400

thumbnail.resize.width: 200

> f = fileHTS(x, 'file', filename='conf/featurepar.txt')

> cat(paste(readLines(f), collapse='\n'), '\n')

extractfeatures.method: getCellFtrsATH

cell.classes: D, I, M

remove.classification.features: c.a.m.cx, c.a.m.cy, c.t.m.cx, c.t.m.cy, c.h.m.cx, c.h.m.cy, c.m.m.cx, c.m.m.cy, n.a.m.cx, n.a.m.cy, n.t.m.cx, n.t.m.cy, n.h.m.cx, n.h.m.cy

cellHTS.features: n, med.c.s.area, med.c.m.m.eccentricity, med.n.ah.cor, M

cellHTS.features.name: Number of cells, Median cell size, Median cell ecc., Median A/H nuc. corr., Metaphase fraction

The following example is the complete script used to automatically segment cells, quantify
cell features, predict cell labels and summarize phenotypes of the whole screen. The example
is not run in this vignette, due to time constraints.
> library('imageHTS')

> localPath = tempdir()

> serverURL = system.file('submorph', package='imageHTS')

> x = parseImageConf('conf/imageconf.txt', localPath=localPath,

+ serverURL=serverURL)

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt',

+ 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

> unames = setdiff(getUnames(x), getUnames(x, content='empty'))

> segmentWells(x, unames, 'conf/segmentationpar.txt')

10

Analysis of high-throughput microscopy-based screens with imageHTS

> extractFeatures(x, unames, 'conf/featurepar.txt')

> readLearnTS(x, 'conf/featurepar.txt', 'conf/trainingset.txt')

> predictCellLabels(x, unames)

> summarizeWells(x, unames, 'conf/featurepar.txt')

3 Getting access to remote screen data
The dual repository architecture of imageHTS allows an easy access to remote screen data.
In the following, we are analysing the full kimorph RNAi screen, targeting about 800 protein
coding genes in HeLa cells. Screen details are available in [1]. The screen has been previously
analysed by imageHTS and screen data is located at http://www.huber.embl.de/cellmorph/
kimorph/. The interactive webQuery browsing interface is available at http://www.huber.
embl.de/cellmorph/kimorph/webquery/.

3.1 Initialization
We first initialize an imageHTS object by setting the variable serverURL to the screen data
URL and the local repository localPath to an empty local directory. We next configure and
annotate the imageHTS objects using the screen configuration files. The files, absent in the
local screen directory, are automatically downloaded from the remote server.
> localPath = file.path(tempdir(), 'kimorph')

> serverURL = 'http://www.huber.embl.de/cellmorph/kimorph/'

> x = parseImageConf('conf/imageconf.txt', localPath=localPath,

+ serverURL=serverURL)

> x = configure(x, 'conf/description.txt', 'conf/plateconf.txt',

+ 'conf/screenlog.txt')

> x = annotate(x, 'conf/annotation.txt')

3.2 Inspecting data
We enumerate the non-empty wells with getUnames and retrieve metadata about them using
getWellFeatures. The controlStatus field contains the well type. We then load the well
phenotypic profiles using readHTS in the variable xd.
> us = setdiff(getUnames(x), getUnames(x, content='empty'))

> wfcontent = getWellFeatures(x, us)$controlStatus

> table(wfcontent)

> xd = readHTS(x, 'file', filename='data/profiles.tab', format='tab')

> xd = xd[match(us, xd$uname),]

There are 1750 non-empty wells in this screen, including 1558 sample experiments and 8
controls, each replicated 24 times. In the following example, we show how the median cell
size med.c.g.ss and median cell eccentricity med.c.g.ec vary within well types.
> colors = c('#ffffff', NA, '#aaffff', '#ffaaff', '#ff44aa', '#aaaaff',

+ '#aaffaa', '#ff7777', '#aaaaaa', '#ffff77')

> par(mfrow=c(1,2))

> boxplot(xd$med.c.g.ss~wfcontent, las=2, col=colors,

11

http://www.huber.embl.de/cellmorph/kimorph/
http://www.huber.embl.de/cellmorph/kimorph/
http://www.huber.embl.de/cellmorph/kimorph/webquery/
http://www.huber.embl.de/cellmorph/kimorph/webquery/

Analysis of high-throughput microscopy-based screens with imageHTS

+ main='Median cell size (a.u.)')

> boxplot(xd$med.c.g.ec~wfcontent, las=2, col=colors,

+ main='Median cell eccentricity (a.u.)')

The boxplots show that the ubc control phenotype is characterized by small and round cells,
the clspn control phenotype is characterized by large cells and the trappc3 control phenotype
is characterized by elongated cells.
To have a screen-wide overview of the well phenotypes, we draw in the following example a
map of the phenotypic profiles using linear discriminant analysis (LDA), computed on the on
the controls rluc, ubc and trappc3.
> library("MASS")

> z = wfcontent %in% c('rluc', 'ubc', 'trappc3')

> ft = 14:50

> ld = lda(xd[z, ft], as.character(wfcontent[z]))

> py = predict(ld, xd[, ft])

> plot(py$x[,1:2])

Two wells stand far away from the other ones. Are they novel phenotypes ? We identify and
display them in the following example.
> unames = us[which(py$x[,1]>500)]

> print(unames)

> f = fileHTS(x, type='viewunmonted', spot=3, uname=unames[1])

> img1 = readImage(f)[1791:2238,1:448,]

> display(img1)

> f = fileHTS(x, type='viewunmonted', spot=1, uname=unames[2])

> img2 = readImage(f)[1:448,1:448,]

> display(img2)

Wells ’001-01-A13’ and ’002-01-I13’ have serious staining problems. This is an example how
a phenotypic map can be used for quality control. The wells cannot be used in the analysis
and can be flagged in the screen log configuration file. The LDA plot is now redrawn by
adjusting plot limits.
> plot(py$x[,1:2], xlim=c(-35,25), ylim=c(-20,20), cex=0.3)

> z = wfcontent!='sample'

> points(py$x[z,1:2], col=1, bg=colors[wfcontent[z]], pch=21)

> col = rep(1, length(levels(wfcontent)))

> col[2] = NA

> legend('topleft', legend=levels(wfcontent), col=col,

+ pt.bg=colors[1:length(wfcontent)], pch=21, ncol=2, cex=0.8)

Control wells ubc, clspn, rluc and trappc3 are well separated from each other. Control wells
plk1 seem to display similar phenotypes than the negative control rluc: further inspection
will reveal than the siRNA reagent against plk1 did not work in this experiment.
Several sample wells seem to have strong phenotypes, distant from negative controls. Further
data inspection is facilitated by the webQuery and cellPicker web modules, which allow
interactive browsing and cell selection/annotation using a web browser. In the following
example, the functions popWebQuery and popCellPicker open the corresponding modules.
See Fig. 6 for an overview of the webQuery and cellPicker web modules.

12

Analysis of high-throughput microscopy-based screens with imageHTS

> popWebQuery(x)

> uname = getUnames(x, content='trappc3')[1]

> popCellPicker(x, uname)

13

Analysis of high-throughput microscopy-based screens with imageHTS

Figure 6: The webQuery (top) and cellPicker (bottom) web modules.

14

Analysis of high-throughput microscopy-based screens with imageHTS

4 Session info
This document was produced using:

• R version 4.2.1 (2022-06-23), aarch64-apple-darwin20
• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Running under: macOS Ventura 13.0

• Matrix products: default
• BLAS:

/Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib

• LAPACK:
/Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils
• Other packages: Biobase 2.58.0, BiocGenerics 0.44.0, EBImage 4.40.0,

RColorBrewer 1.1-3, cellHTS2 2.62.0, genefilter 1.80.0, hwriter 1.3.2.1,
imageHTS 1.48.0, locfit 1.5-9.6, splots 1.64.0, vsn 3.66.0

• Loaded via a namespace (and not attached): AnnotationDbi 1.60.0,
BiocManager 1.30.18, BiocStyle 2.26.0, Biostrings 2.66.0, Category 2.64.0,
DBI 1.1.3, GSEABase 1.60.0, GenomeInfoDb 1.34.2, GenomeInfoDbData 1.2.8,
IRanges 2.32.0, KEGGREST 1.38.0, Matrix 1.4-1, R6 2.5.1, RBGL 1.74.0,
RCurl 1.98-1.7, RSQLite 2.2.14, Rcpp 1.0.9, S4Vectors 0.36.0, XML 3.99-0.10,
XVector 0.38.0, abind 1.4-5, affy 1.76.0, affyio 1.68.0, annotate 1.76.0,
assertthat 0.2.1, bit 4.0.4, bit64 4.0.5, bitops 1.0-7, blob 1.2.3, cachem 1.0.6,
class 7.3-20, cli 3.3.0, colorspace 2.0-3, compiler 4.2.1, crayon 1.5.1, digest 0.6.29,
dplyr 1.0.9, e1071 1.7-11, ellipsis 0.3.2, evaluate 0.15, fansi 1.0.3, fastmap 1.1.0,
fftwtools 0.9-11, generics 0.1.3, ggplot2 3.3.6, glue 1.6.2, graph 1.76.0, gtable 0.3.0,
htmltools 0.5.2, htmlwidgets 1.5.4, httr 1.4.3, jpeg 0.1-9, knitr 1.39, lattice 0.20-45,
lifecycle 1.0.1, limma 3.54.0, magrittr 2.0.3, memoise 2.0.1, munsell 0.5.0,
pillar 1.7.0, pkgconfig 2.0.3, png 0.1-7, preprocessCore 1.60.0, proxy 0.4-27,
purrr 0.3.4, rlang 1.0.4, rmarkdown 2.14, scales 1.2.0, splines 4.2.1, stats4 4.2.1,
survival 3.3-1, tibble 3.1.7, tidyselect 1.1.2, tiff 0.1-11, tools 4.2.1, utf8 1.2.2,
vctrs 0.4.1, xfun 0.31, xtable 1.8-4, yaml 2.3.5, zlibbioc 1.44.0

References
[1] F. Fuchs, G. Pau, D. Kranz, O. Sklyar, C. Budjan, S. Steinbrink, T. Horn, A. Pedal,

W. Huber, and M. Boutros. Clustering phenotype populations by genome-wide RNAi
and multiparametric imaging. Mol. Syst. Biol., 6:370, Jun 2010.

[2] M. Boutros, L. P. Bras, and W. Huber. Analysis of cell-based RNAi screens. Genome
Biol., 7:R66, 2006.

[3] G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber. EBImage–an R package for
image processing with applications to cellular phenotypes. Bioinformatics, 26:979–981,
Apr 2010.

15

	1 Introduction
	2 Analysis of a microscopy-based screen
	2.1 Initialization
	2.2 Cell segmentation
	2.3 Quantification of cell features
	2.4 Prediction of cell classes
	2.5 Phenotype summarization
	2.6 Configuration files and complete script

	3 Getting access to remote screen data
	3.1 Initialization
	3.2 Inspecting data

	4 Session info

