fgsea
is an R-package for fast preranked gene set
enrichment analysis (GSEA). This package allows to quickly and
accurately calculate arbitrarily low GSEA P-values for a collection of
gene sets. P-value estimation is based on an adaptive multi-level split
Monte-Carlo scheme. See the preprint for
algorithmic details.
library(fgsea)
library(data.table)
library(ggplot2)
Loading example pathways and gene-level statistics and setting random seed:
data(examplePathways)
data(exampleRanks)
set.seed(42)
Running fgsea:
<- fgsea(pathways = examplePathways,
fgseaRes stats = exampleRanks,
minSize = 15,
maxSize = 500)
The resulting table contains enrichment scores and p-values:
head(fgseaRes[order(pval), ])
## pathway pval padj
## 1: 5990979_Cell_Cycle,_Mitotic 6.690481e-27 3.920622e-24
## 2: 5990980_Cell_Cycle 3.312565e-26 9.705816e-24
## 3: 5991851_Mitotic_Prometaphase 8.470173e-19 1.654507e-16
## 4: 5992217_Resolution_of_Sister_Chromatid_Cohesion 2.176649e-18 3.188791e-16
## 5: 5991454_M_Phase 1.873997e-14 2.196325e-12
## 6: 5991599_Separation_of_Sister_Chromatids 8.733223e-14 8.529448e-12
## log2err ES NES size leadingEdge
## 1: 1.3422338 0.5594755 2.769070 317 66336,66977,12442,107995,66442,12571,...
## 2: 1.3267161 0.5388497 2.705894 369 66336,66977,12442,107995,66442,19361,...
## 3: 1.1239150 0.7253270 2.972690 82 66336,66977,12442,107995,66442,52276,...
## 4: 1.1053366 0.7347987 2.957518 74 66336,66977,12442,107995,66442,52276,...
## 5: 0.9759947 0.5576247 2.554076 173 66336,66977,12442,107995,66442,52276,...
## 6: 0.9545416 0.6164600 2.670030 116 66336,66977,107995,66442,52276,67629,...
As you can see from the warning, fgsea
has a default
lower bound eps=1e-10
for estimating P-values. If you need
to estimate P-value more accurately, you can set the eps
argument to zero in the fgsea
function.
<- fgsea(pathways = examplePathways,
fgseaRes stats = exampleRanks,
eps = 0.0,
minSize = 15,
maxSize = 500)
head(fgseaRes[order(pval), ])
## pathway pval padj
## 1: 5990980_Cell_Cycle 2.535645e-26 1.485888e-23
## 2: 5990979_Cell_Cycle,_Mitotic 9.351994e-26 2.740134e-23
## 3: 5991851_Mitotic_Prometaphase 3.633805e-19 7.098033e-17
## 4: 5992217_Resolution_of_Sister_Chromatid_Cohesion 2.077985e-17 3.044248e-15
## 5: 5991454_M_Phase 2.251818e-14 2.639131e-12
## 6: 5991502_Mitotic_Metaphase_and_Anaphase 3.196758e-14 3.122167e-12
## log2err ES NES size leadingEdge
## 1: 1.3344975 0.5388497 2.664606 369 66336,66977,12442,107995,66442,19361,...
## 2: 1.3188888 0.5594755 2.740246 317 66336,66977,12442,107995,66442,12571,...
## 3: 1.1330899 0.7253270 2.926512 82 66336,66977,12442,107995,66442,52276,...
## 4: 1.0768682 0.7347987 2.920436 74 66336,66977,12442,107995,66442,52276,...
## 5: 0.9759947 0.5576247 2.547515 173 66336,66977,12442,107995,66442,52276,...
## 6: 0.9653278 0.6052907 2.639370 123 66336,66977,107995,66442,52276,67629,...
One can make an enrichment plot for a pathway:
plotEnrichment(examplePathways[["5991130_Programmed_Cell_Death"]],
+ labs(title="Programmed Cell Death") exampleRanks)
Or make a table plot for a bunch of selected pathways:
<- fgseaRes[ES > 0][head(order(pval), n=10), pathway]
topPathwaysUp <- fgseaRes[ES < 0][head(order(pval), n=10), pathway]
topPathwaysDown <- c(topPathwaysUp, rev(topPathwaysDown))
topPathways plotGseaTable(examplePathways[topPathways], exampleRanks, fgseaRes,
gseaParam=0.5)
From the plot above one can see that there are very similar pathways
in the table (for example
5991502_Mitotic_Metaphase_and_Anaphase
and
5991600_Mitotic_Anaphase
). To select only independent
pathways one can use collapsePathways
function:
<- collapsePathways(fgseaRes[order(pval)][padj < 0.01],
collapsedPathways
examplePathways, exampleRanks)<- fgseaRes[pathway %in% collapsedPathways$mainPathways][
mainPathways order(-NES), pathway]
plotGseaTable(examplePathways[mainPathways], exampleRanks, fgseaRes,
gseaParam = 0.5)
To save the results in a text format data:table::fwrite
function can be used:
fwrite(fgseaRes, file="fgseaRes.txt", sep="\t", sep2=c("", " ", ""))
To make leading edge more human-readable it can be converted using
mapIdsList
(similar to AnnotationDbi::mapIds
)
function and a corresponding database (here org.Mm.eg.db
for mouse):
library(org.Mm.eg.db)
<- fgseaRes[match(mainPathways, pathway)]
fgseaResMain := mapIdsList(
fgseaResMain[, leadingEdge x=org.Mm.eg.db,
keys=leadingEdge,
keytype="ENTREZID",
column="SYMBOL")]
fwrite(fgseaResMain, file="fgseaResMain.txt", sep="\t", sep2=c("", " ", ""))
Also, fgsea
is parallelized using
BiocParallel
package. By default the first registered
backend returned by bpparam()
is used. To tweak the
parallelization one can either specify BPPARAM
parameter
used for bplapply
of set nproc
parameter,
which is a shorthand for setting
BPPARAM=MulticoreParam(workers = nproc)
.
For convenience there is reactomePathways
function that
obtains pathways from Reactome for given set of genes. Package
reactome.db
is required to be installed.
<- reactomePathways(names(exampleRanks))
pathways <- fgsea(pathways, exampleRanks, maxSize=500)
fgseaRes head(fgseaRes)
## pathway pval
## 1: 5-Phosphoribose 1-diphosphate biosynthesis 0.879921260
## 2: A tetrasaccharide linker sequence is required for GAG synthesis 0.509842520
## 3: ABC transporters in lipid homeostasis 0.244258873
## 4: ABC-family proteins mediated transport 0.400000000
## 5: ABO blood group biosynthesis 0.975708502
## 6: ADP signalling through P2Y purinoceptor 1 0.006987104
## padj log2err ES NES size
## 1: 0.95233803 0.05080541 -0.5732978 -0.7547789 1
## 2: 0.77031899 0.07727470 0.3755168 0.9506349 10
## 3: 0.58861839 0.12563992 -0.4385385 -1.2221901 12
## 4: 0.70871773 0.08085892 0.2614189 1.0373162 66
## 5: 0.98830682 0.04735342 0.5120427 0.6814020 1
## 6: 0.06731181 0.40701792 0.6228710 1.7896731 16
## leadingEdge
## 1: 19139
## 2: 14733,20971,20970,12032,29873,218271,...
## 3: 19299,27403,11307,11806,217265,27409,...
## 4: 17463,26440,26444,19179,228769,56325,...
## 5: 14344
## 6: 14696,14702,14700,14682,14676,66066,...
One can also start from .rnk
and .gmt
files
as in original GSEA:
<- system.file("extdata", "naive.vs.th1.rnk", package="fgsea")
rnk.file <- system.file("extdata", "mouse.reactome.gmt", package="fgsea") gmt.file
Loading ranks:
<- read.table(rnk.file,
ranks header=TRUE, colClasses = c("character", "numeric"))
<- setNames(ranks$t, ranks$ID)
ranks str(ranks)
## Named num [1:12000] -63.3 -49.7 -43.6 -41.5 -33.3 ...
## - attr(*, "names")= chr [1:12000] "170942" "109711" "18124" "12775" ...
Loading pathways:
<- gmtPathways(gmt.file)
pathways str(head(pathways))
## List of 6
## $ 1221633_Meiotic_Synapsis : chr [1:64] "12189" "13006" "15077" "15078" ...
## $ 1368092_Rora_activates_gene_expression : chr [1:9] "11865" "12753" "12894" "18143" ...
## $ 1368110_Bmal1:Clock,Npas2_activates_circadian_gene_expression : chr [1:16] "11865" "11998" "12753" "12952" ...
## $ 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane : chr [1:55] "11461" "11465" "11651" "11652" ...
## $ 186574_Endocrine-committed_Ngn3+_progenitor_cells : chr [1:4] "18012" "18088" "18506" "53626"
## $ 186589_Late_stage_branching_morphogenesis_pancreatic_bud_precursor_cells: chr [1:4] "11925" "15205" "21410" "246086"
And running fgsea:
<- fgsea(pathways, ranks, minSize=15, maxSize=500)
fgseaRes head(fgseaRes)
## pathway
## 1: 1221633_Meiotic_Synapsis
## 2: 1445146_Translocation_of_Glut4_to_the_Plasma_Membrane
## 3: 442533_Transcriptional_Regulation_of_Adipocyte_Differentiation_in_3T3-L1_Pre-adipocytes
## 4: 508751_Circadian_Clock
## 5: 5334727_Mus_musculus_biological_processes
## 6: 573389_NoRC_negatively_regulates_rRNA_expression
## pval padj log2err ES NES size
## 1: 0.5483333 0.7251271 0.06523531 0.2885754 0.9412385 27
## 2: 0.6857610 0.8336764 0.05378728 0.2387284 0.8387184 39
## 3: 0.1362468 0.3150882 0.19381330 -0.3640706 -1.3431389 31
## 4: 0.7779661 0.8806609 0.04959020 0.2516324 0.7382131 17
## 5: 0.3884892 0.5913108 0.07511816 0.2469065 1.0473836 106
## 6: 0.4101695 0.6090340 0.08085892 0.3607407 1.0583037 17
## leadingEdge
## 1: 15270,12189,71846,19357
## 2: 17918,19341,20336,22628,22627,20619,...
## 3: 76199,19014,26896,229003,17977,17978,...
## 4: 20893,59027,19883
## 5: 60406,19361,15270,20893,12189,68240,...
## 6: 60406,20018,245688,20017