We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.
library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)
# How to convert your excel sheet into vector of static and functional markers
markers
## $input
## [1] "CD3(Cd110)Di" "CD3(Cd111)Di" "CD3(Cd112)Di"
## [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di" "CD45(In115)Di"
## [7] "CD19(Nd142)Di" "CD22(Nd143)Di" "IgD(Nd145)Di"
## [10] "CD79b(Nd146)Di" "CD20(Sm147)Di" "CD34(Nd148)Di"
## [13] "CD179a(Sm149)Di" "CD72(Eu151)Di" "IgM(Eu153)Di"
## [16] "Kappa(Sm154)Di" "CD10(Gd156)Di" "Lambda(Gd157)Di"
## [19] "CD24(Dy161)Di" "TdT(Dy163)Di" "Rag1(Dy164)Di"
## [22] "PreBCR(Ho165)Di" "CD43(Er167)Di" "CD38(Er168)Di"
## [25] "CD40(Er170)Di" "CD33(Yb173)Di" "HLA-DR(Yb174)Di"
##
## $functional
## [1] "pCrkL(Lu175)Di" "pCREB(Yb176)Di" "pBTK(Yb171)Di" "pS6(Yb172)Di"
## [5] "cPARP(La139)Di" "pPLCg2(Pr141)Di" "pSrc(Nd144)Di" "Ki67(Sm152)Di"
## [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di" "pBLNK(Gd160)Di"
## [13] "pP38(Tm169)Di" "pSTAT5(Nd150)Di" "pSyk(Dy162)Di" "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]
# Selection of the k. See "Finding Ideal K" vignette
k <- 30
# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn,
# and the euclidean distance between
# itself and the cell of interest
# Indices
str(wand.nn[[1]])
## int [1:1000, 1:30] 457 624 351 903 625 471 130 44 259 665 ...
wand.nn[[1]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 457 682 481 67 484 867 42 674 713 342
## [2,] 624 960 484 94 457 336 713 113 405 682
## [3,] 351 604 695 397 804 565 391 978 888 303
## [4,] 903 755 841 791 783 432 894 30 790 915
## [5,] 625 603 492 193 853 667 442 398 650 801
## [6,] 471 835 243 107 688 858 812 257 393 577
## [7,] 130 785 215 308 709 360 419 606 65 26
## [8,] 44 920 772 312 982 921 175 146 127 593
## [9,] 259 667 650 440 29 124 915 774 511 407
## [10,] 665 589 362 970 791 944 457 103 753 913
## [11,] 242 937 278 211 154 641 188 525 509 493
## [12,] 151 477 587 972 876 182 898 674 92 545
## [13,] 935 160 858 358 393 114 320 749 644 688
## [14,] 713 475 867 1 105 682 843 262 955 2
## [15,] 113 105 262 421 517 773 240 92 336 636
## [16,] 804 820 147 528 979 862 397 364 88 548
## [17,] 797 29 231 650 736 541 230 670 567 212
## [18,] 710 106 846 674 914 273 54 256 72 462
## [19,] 962 627 398 581 797 136 801 331 709 20
## [20,] 711 331 603 129 625 442 348 608 41 371
# Distance
str(wand.nn[[2]])
## num [1:1000, 1:30] 3.06 2.52 2.54 3.6 2.07 ...
wand.nn[[2]][1:20, 1:10]
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 3.061246 3.180421 3.262575 3.331167 3.485061 3.543151 3.550177 3.553320
## [2,] 2.522069 2.996389 3.121466 3.127203 3.312508 3.444082 3.452956 3.453405
## [3,] 2.539880 2.750091 3.005326 3.125896 3.188564 3.204252 3.215832 3.257949
## [4,] 3.597990 3.612581 3.631417 3.686504 3.704716 3.768494 3.823646 3.862133
## [5,] 2.071327 2.180085 2.575365 2.589770 2.620281 2.648569 2.760765 2.803407
## [6,] 3.488930 3.742919 3.789020 3.879786 4.013427 4.107679 4.263874 4.288083
## [7,] 2.803685 3.180609 3.602938 3.641495 3.749763 3.763579 3.942419 4.142052
## [8,] 4.085178 4.401853 4.488538 4.521688 4.586298 4.595482 4.619212 4.783136
## [9,] 3.135509 3.206864 3.514399 3.549906 3.589964 3.697963 3.775141 3.835667
## [10,] 2.765675 2.832318 2.943991 3.013196 3.098479 3.119748 3.161492 3.207026
## [11,] 3.471605 3.688802 3.735966 4.057822 4.120862 4.193240 4.277440 4.320054
## [12,] 3.132644 3.277176 3.574940 3.639797 3.831307 3.868862 3.922722 4.004922
## [13,] 3.012112 3.304815 3.418581 3.447265 3.597304 3.604383 3.716201 3.727787
## [14,] 3.658589 3.687519 3.713328 3.849979 3.902831 3.923946 3.962801 3.965478
## [15,] 3.251393 3.344558 3.444666 3.638739 3.727765 3.728085 3.760028 3.910739
## [16,] 2.893655 3.021908 3.030025 3.263179 3.310881 3.320233 3.403182 3.628872
## [17,] 2.308497 2.482125 2.739427 2.754457 2.762795 2.786634 2.860018 2.936392
## [18,] 3.172684 3.292320 3.351309 3.528282 3.554566 3.565380 3.604993 3.707276
## [19,] 2.608074 2.793839 2.806661 2.895936 2.987004 2.991700 2.993643 2.998185
## [20,] 2.158073 2.342175 2.418549 2.609882 2.654143 2.662743 2.674326 2.692768
## [,9] [,10]
## [1,] 3.564391 3.569898
## [2,] 3.459874 3.510417
## [3,] 3.280882 3.330960
## [4,] 3.904556 3.909994
## [5,] 2.876484 2.943282
## [6,] 4.327964 4.358622
## [7,] 4.153447 4.204074
## [8,] 4.901480 4.905373
## [9,] 3.838373 3.858565
## [10,] 3.215355 3.232540
## [11,] 4.445431 4.521886
## [12,] 4.074269 4.098974
## [13,] 3.809217 3.816823
## [14,] 4.062498 4.096594
## [15,] 3.917435 4.115166
## [16,] 3.641564 3.646421
## [17,] 2.941144 2.977965
## [18,] 3.719047 3.731281
## [19,] 3.122293 3.143366
## [20,] 2.753930 2.754043
This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.
wand.scone <- SconeValues(nn.matrix = wand.nn,
cell.data = wand.combined,
scone.markers = funct.markers,
unstim = "basal")
wand.scone
## # A tibble: 1,000 × 34
## `pCrkL(Lu175)Di.IL7.qval…` `pCREB(Yb176)D…` `pBTK(Yb171)Di…` `pS6(Yb172)Di.…`
## <dbl> <dbl> <dbl> <dbl>
## 1 0.603 1 1 0.969
## 2 0.895 1 0.995 0.748
## 3 0.940 1 0.995 0.999
## 4 0.961 1 0.995 0.894
## 5 0.996 1 1 0.906
## 6 0.948 1 0.995 0.570
## 7 0.969 1 0.995 0.894
## 8 0.954 1 1 0.894
## 9 0.996 1 0.995 0.821
## 10 0.961 1 0.995 0.681
## # … with 990 more rows, and 30 more variables:
## # `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## # `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## # `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>,
## # `pAKT(Tb159)Di.IL7.qvalue` <dbl>, `pBLNK(Gd160)Di.IL7.qvalue` <dbl>,
## # `pP38(Tm169)Di.IL7.qvalue` <dbl>, `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>,
## # `pSyk(Dy162)Di.IL7.qvalue` <dbl>, `tIkBa(Er166)Di.IL7.qvalue` <dbl>, …
If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.
I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).
I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.
An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:
# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
## `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(…` `CD3(Cd114)Di`
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.416 -0.0134 2.30 -0.206 2.39
## 2 0.618 -0.191 0.235 -1.03 1.93
## 3 0.381 0.864 -0.346 0.0486 0.385
## 4 -0.660 -0.364 -0.141 0.450 -0.0846
## 5 -0.120 -0.218 1.30 0.962 0.390
## 6 0.900 0.483 -0.110 -0.415 1.02
## 7 -0.00743 -0.0606 -0.335 0.0742 0.354
## 8 -0.0784 1.08 0.860 -0.631 0.449
## 9 -0.0337 -0.117 -0.583 0.0137 -0.0686
## 10 0.689 1.67 1.65 0.479 0.624
## # … with 20 more rows, and 46 more variables: `CD45(In115)Di` <dbl>,
## # `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## # `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## # `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## # `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## # `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>,
## # `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>, `CD38(Er168)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
## num [1:1000] 0.269 0.282 0.287 0.254 0.336 ...