SEtools 1.10.0
The SEtools package is a set of convenience functions for the Bioconductor class SummarizedExperiment. It facilitates merging, melting, and plotting SummarizedExperiment
objects.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("SEtools")
NOTE that the heatmap-related functions have been moved to a standalone package, sechm.
Or, to install the latest development version:
BiocManager::install("plger/SEtools")
To showcase the main functions, we will use an example object which contains (a subset of) whole-hippocampus RNAseq of mice after different stressors:
suppressPackageStartupMessages({
library(SummarizedExperiment)
library(SEtools)
})
data("SE", package="SEtools")
SE
## class: SummarizedExperiment
## dim: 100 20
## metadata(0):
## assays(2): counts logcpm
## rownames(100): Egr1 Nr4a1 ... CH36-200G6.4 Bhlhe22
## rowData names(2): meanCPM meanTPM
## colnames(20): HC.Homecage.1 HC.Homecage.2 ... HC.Swim.4 HC.Swim.5
## colData names(2): Region Condition
This is taken from Floriou-Servou et al., Biol Psychiatry 2018.
se1 <- SE[,1:10]
se2 <- SE[,11:20]
se3 <- mergeSEs( list(se1=se1, se2=se2) )
se3
## class: SummarizedExperiment
## dim: 100 20
## metadata(3): se1 se2 anno_colors
## assays(2): counts logcpm
## rownames(100): AC139063.2 Actr6 ... Zfp667 Zfp930
## rowData names(2): meanCPM meanTPM
## colnames(20): se1.HC.Homecage.1 se1.HC.Homecage.2 ... se2.HC.Swim.4
## se2.HC.Swim.5
## colData names(3): Dataset Region Condition
All assays were merged, along with rowData and colData slots.
By default, row z-scores are calculated for each object when merging. This can be prevented with:
se3 <- mergeSEs( list(se1=se1, se2=se2), do.scale=FALSE)
If more than one assay is present, one can specify a different scaling behavior for each assay:
se3 <- mergeSEs( list(se1=se1, se2=se2), use.assays=c("counts", "logcpm"), do.scale=c(FALSE, TRUE))
It is also possible to merge by rowData columns, which are specified through the mergeBy
argument.
In this case, one can have one-to-many and many-to-many mappings, in which case two behaviors are possible:
aggFun
, the features of each object will by aggregated by mergeBy
using this function before merging.rowData(se1)$metafeature <- sample(LETTERS,nrow(se1),replace = TRUE)
rowData(se2)$metafeature <- sample(LETTERS,nrow(se2),replace = TRUE)
se3 <- mergeSEs( list(se1=se1, se2=se2), do.scale=FALSE, mergeBy="metafeature", aggFun=median)
## Aggregating the objects by metafeature
## Merging...
sechm::sechm(se3, features=row.names(se3))
A single SE can also be aggregated by using the aggSE
function:
se1b <- aggSE(se1, by = "metafeature")
## Aggregation methods for each assay:
## counts: sum; logcpm: expsum
se1b
## class: SummarizedExperiment
## dim: 24 10
## metadata(0):
## assays(2): counts logcpm
## rownames(24): A B ... Y Z
## rowData names(0):
## colnames(10): HC.Homecage.1 HC.Homecage.2 ... HC.Handling.4
## HC.Handling.5
## colData names(2): Region Condition
If the aggregation function(s) are not specified, aggSE
will try to guess decent aggregation functions from the assay names.
To facilitate plotting features with ggplot2, the meltSE
function combines assay values along with row/column data:
d <- meltSE(SE, genes=row.names(SE)[1:4])
head(d)
## feature sample Region Condition counts logcpm
## 1 Egr1 HC.Homecage.1 HC Homecage 1581.0 4.4284969
## 2 Nr4a1 HC.Homecage.1 HC Homecage 750.0 3.6958917
## 3 Fos HC.Homecage.1 HC Homecage 91.4 1.7556317
## 4 Egr2 HC.Homecage.1 HC Homecage 15.1 0.5826999
## 5 Egr1 HC.Homecage.2 HC Homecage 1423.0 4.4415828
## 6 Nr4a1 HC.Homecage.2 HC Homecage 841.0 3.9237691
suppressPackageStartupMessages(library(ggplot2))
ggplot(d, aes(Condition, counts, fill=Condition)) + geom_violin() +
facet_wrap(~feature, scale="free")
Calculate an assay of log-foldchanges to the controls:
SE <- log2FC(SE, fromAssay="logcpm", controls=SE$Condition=="Homecage")
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] ggplot2_3.3.5 SEtools_1.10.0
## [3] SummarizedExperiment_1.26.0 Biobase_2.56.0
## [5] GenomicRanges_1.48.0 GenomeInfoDb_1.32.0
## [7] IRanges_2.30.0 S4Vectors_0.34.0
## [9] BiocGenerics_0.42.0 MatrixGenerics_1.8.0
## [11] matrixStats_0.62.0 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] Rtsne_0.16 colorspace_2.0-3 rjson_0.2.21
## [4] ellipsis_0.3.2 circlize_0.4.14 XVector_0.36.0
## [7] GlobalOptions_0.1.2 clue_0.3-60 farver_2.1.0
## [10] bit64_4.0.5 AnnotationDbi_1.58.0 fansi_1.0.3
## [13] codetools_0.2-18 splines_4.2.0 doParallel_1.0.17
## [16] cachem_1.0.6 sechm_1.4.0 geneplotter_1.74.0
## [19] knitr_1.38 jsonlite_1.8.0 Cairo_1.5-15
## [22] annotate_1.74.0 cluster_2.1.3 png_0.1-7
## [25] BiocManager_1.30.17 compiler_4.2.0 httr_1.4.2
## [28] assertthat_0.2.1 Matrix_1.4-1 fastmap_1.1.0
## [31] limma_3.52.0 cli_3.3.0 htmltools_0.5.2
## [34] tools_4.2.0 gtable_0.3.0 glue_1.6.2
## [37] GenomeInfoDbData_1.2.8 dplyr_1.0.8 V8_4.1.0
## [40] Rcpp_1.0.8.3 jquerylib_0.1.4 vctrs_0.4.1
## [43] Biostrings_2.64.0 nlme_3.1-157 iterators_1.0.14
## [46] xfun_0.30 stringr_1.4.0 openxlsx_4.2.5
## [49] lifecycle_1.0.1 XML_3.99-0.9 edgeR_3.38.0
## [52] zlibbioc_1.42.0 scales_1.2.0 TSP_1.2-0
## [55] parallel_4.2.0 RColorBrewer_1.1-3 ComplexHeatmap_2.12.0
## [58] yaml_2.3.5 curl_4.3.2 memoise_2.0.1
## [61] sass_0.4.1 stringi_1.7.6 RSQLite_2.2.12
## [64] highr_0.9 randomcoloR_1.1.0.1 genefilter_1.78.0
## [67] foreach_1.5.2 seriation_1.3.5 zip_2.2.0
## [70] BiocParallel_1.30.0 shape_1.4.6 rlang_1.0.2
## [73] pkgconfig_2.0.3 bitops_1.0-7 evaluate_0.15
## [76] lattice_0.20-45 purrr_0.3.4 labeling_0.4.2
## [79] bit_4.0.4 tidyselect_1.1.2 magrittr_2.0.3
## [82] bookdown_0.26 DESeq2_1.36.0 R6_2.5.1
## [85] magick_2.7.3 generics_0.1.2 DelayedArray_0.22.0
## [88] DBI_1.1.2 withr_2.5.0 mgcv_1.8-40
## [91] pillar_1.7.0 survival_3.3-1 KEGGREST_1.36.0
## [94] RCurl_1.98-1.6 tibble_3.1.6 crayon_1.5.1
## [97] utf8_1.2.2 rmarkdown_2.14 GetoptLong_1.0.5
## [100] locfit_1.5-9.5 grid_4.2.0 sva_3.44.0
## [103] data.table_1.14.2 blob_1.2.3 digest_0.6.29
## [106] xtable_1.8-4 munsell_0.5.0 registry_0.5-1
## [109] bslib_0.3.1