Contents

Compiled date: 2022-04-26

Last edited: 2021-12-12

License: GPL-3

1 Installation

Run the following code to install the Bioconductor version of package.

# install.packages("BiocManager")
BiocManager::install("POMA")

2 Load POMA

library(POMA)

3 Automatic EDA Report

The following function will return an Exploratory Data Analysis (EDA) PDF report. The input object must be a SummarizedExperiment object.

data("st000336")
PomaEDA(st000336)

Generated EDA PDF report starts here.

4 Know your data

4.1 Summary Table

Samples Features Covariates
57 31 1
Counts_Zero Percent_Zero
0 0 %
Counts_NA Percent_NA
61 3.45 %

4.2 Samples by Group

5 Normalization Plots

6 Group Distribution Plots

7 Outlier Detection

7 possible outliers detected in your data. These outliers are ‘DMD119.2.U02’, ‘DMD084.11.U02’, ‘DMD087.12.U02’, ‘DMD023.10.U02’, ‘DMD046.11.U02’, ‘DMD133.9.U02’, ‘DMD135.10.U02’.

sample group distance_to_centroid limit_distance
DMD119.2.U02 Controls 2.742576 2.290945
DMD084.11.U02 DMD 4.522825 4.040548
DMD087.12.U02 DMD 4.252170 4.040548
DMD023.10.U02 DMD 5.653399 4.040548
DMD046.11.U02 DMD 5.580959 4.040548
DMD133.9.U02 DMD 5.349670 4.040548
DMD135.10.U02 DMD 4.055233 4.040548

8 High Correlated Features (r > 0.97)

There are 0 high correlated feature pairs in your data.

9 Heatmap and Clustering

10 Principal Component Analysis