Load the package with the library function.
library(tidyverse)
library(ggplot2)
library(dce)
set.seed(42)
We provide access to the following topological pathway databases using graphite (Sales et al. 2012) in a processed format. This format looks as follows:
dce::df_pathway_statistics %>%
arrange(desc(node_num)) %>%
head(10) %>%
knitr::kable()
database | pathway_id | pathway_name | node_num | edge_num |
---|---|---|---|---|
reactome | R-HSA-162582 | Signaling Pathways | 2488 | 62068 |
reactome | R-HSA-1430728 | Metabolism | 2047 | 85543 |
reactome | R-HSA-392499 | Metabolism of proteins | 1894 | 52807 |
reactome | R-HSA-1643685 | Disease | 1774 | 55469 |
reactome | R-HSA-168256 | Immune System | 1771 | 58277 |
panther | P00057 | Wnt signaling pathway | 1644 | 195344 |
reactome | R-HSA-74160 | Gene expression (Transcription) | 1472 | 32493 |
reactome | R-HSA-597592 | Post-translational protein modification | 1394 | 26399 |
kegg | hsa:01100 | Metabolic pathways | 1343 | 22504 |
reactome | R-HSA-73857 | RNA Polymerase II Transcription | 1339 | 25294 |
Let’s see how many pathways each database provides:
dce::df_pathway_statistics %>%
count(database, sort = TRUE, name = "pathway_number") %>%
knitr::kable()
database | pathway_number |
---|---|
pathbank | 48685 |
smpdb | 48671 |
reactome | 2406 |
wikipathways | 640 |
kegg | 323 |
panther | 94 |
pharmgkb | 90 |
Next, we can see how the pathway sizes are distributed for each database:
dce::df_pathway_statistics %>%
ggplot(aes(x = node_num)) +
geom_histogram(bins = 30) +
facet_wrap(~ database, scales = "free") +
theme_minimal()
It is easily possible to plot pathways:
pathways <- get_pathways(
pathway_list = list(
pathbank = c("Lactose Synthesis"),
kegg = c("Fatty acid biosynthesis")
)
)
lapply(pathways, function(x) {
plot_network(
as(x$graph, "matrix"),
visualize_edge_weights = FALSE,
arrow_size = 0.02,
shadowtext = TRUE
) +
ggtitle(x$pathway_name)
})
## [[1]]
##
## [[2]]
sessionInfo()
## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] dce_1.4.0 graph_1.74.0
## [3] cowplot_1.1.1 forcats_0.5.1
## [5] stringr_1.4.0 dplyr_1.0.8
## [7] purrr_0.3.4 readr_2.1.2
## [9] tidyr_1.2.0 tibble_3.1.6
## [11] tidyverse_1.3.1 TCGAutils_1.16.0
## [13] curatedTCGAData_1.17.1 MultiAssayExperiment_1.22.0
## [15] SummarizedExperiment_1.26.0 Biobase_2.56.0
## [17] GenomicRanges_1.48.0 GenomeInfoDb_1.32.0
## [19] IRanges_2.30.0 S4Vectors_0.34.0
## [21] BiocGenerics_0.42.0 MatrixGenerics_1.8.0
## [23] matrixStats_0.62.0 ggraph_2.0.5
## [25] ggplot2_3.3.5 BiocStyle_2.24.0
##
## loaded via a namespace (and not attached):
## [1] rappdirs_0.3.3 rtracklayer_1.56.0
## [3] prabclus_2.3-2 bit64_4.0.5
## [5] knitr_1.38 multcomp_1.4-19
## [7] DelayedArray_0.22.0 data.table_1.14.2
## [9] wesanderson_0.3.6 KEGGREST_1.36.0
## [11] RCurl_1.98-1.6 generics_0.1.2
## [13] metap_1.8 GenomicFeatures_1.48.0
## [15] TH.data_1.1-1 RSQLite_2.2.12
## [17] shadowtext_0.1.2 proxy_0.4-26
## [19] CombinePValue_1.0 bit_4.0.4
## [21] tzdb_0.3.0 mutoss_0.1-12
## [23] xml2_1.3.3 lubridate_1.8.0
## [25] httpuv_1.6.5 assertthat_0.2.1
## [27] viridis_0.6.2 amap_0.8-18
## [29] xfun_0.30 hms_1.1.1
## [31] jquerylib_0.1.4 evaluate_0.15
## [33] promises_1.2.0.1 DEoptimR_1.0-11
## [35] fansi_1.0.3 restfulr_0.0.13
## [37] progress_1.2.2 dbplyr_2.1.1
## [39] readxl_1.4.0 Rgraphviz_2.40.0
## [41] igraph_1.3.1 DBI_1.1.2
## [43] tmvnsim_1.0-2 apcluster_1.4.9
## [45] RcppArmadillo_0.11.0.0.0 ellipsis_0.3.2
## [47] backports_1.4.1 bookdown_0.26
## [49] permute_0.9-7 harmonicmeanp_3.0
## [51] biomaRt_2.52.0 vctrs_0.4.1
## [53] abind_1.4-5 Linnorm_2.20.0
## [55] cachem_1.0.6 RcppEigen_0.3.3.9.2
## [57] withr_2.5.0 sfsmisc_1.1-13
## [59] ggforce_0.3.3 robustbase_0.95-0
## [61] bdsmatrix_1.3-4 vegan_2.6-2
## [63] GenomicAlignments_1.32.0 pcalg_2.7-6
## [65] prettyunits_1.1.1 mclust_5.4.9
## [67] mnormt_2.0.2 cluster_2.1.3
## [69] ExperimentHub_2.4.0 GenomicDataCommons_1.20.0
## [71] crayon_1.5.1 ellipse_0.4.2
## [73] labeling_0.4.2 FMStable_0.1-2
## [75] edgeR_3.38.0 pkgconfig_2.0.3
## [77] qqconf_1.2.3 tweenr_1.0.2
## [79] nlme_3.1-157 ggm_2.5
## [81] nnet_7.3-17 rlang_1.0.2
## [83] diptest_0.76-0 lifecycle_1.0.1
## [85] sandwich_3.0-1 filelock_1.0.2
## [87] BiocFileCache_2.4.0 mathjaxr_1.6-0
## [89] modelr_0.1.8 AnnotationHub_3.4.0
## [91] cellranger_1.1.0 polyclip_1.10-0
## [93] Matrix_1.4-1 zoo_1.8-10
## [95] reprex_2.0.1 png_0.1-7
## [97] viridisLite_0.4.0 rjson_0.2.21
## [99] bitops_1.0-7 Biostrings_2.64.0
## [101] blob_1.2.3 scales_1.2.0
## [103] plyr_1.8.7 memoise_2.0.1
## [105] graphite_1.42.0 magrittr_2.0.3
## [107] gdata_2.18.0 zlibbioc_1.42.0
## [109] compiler_4.2.0 BiocIO_1.6.0
## [111] clue_0.3-60 plotrix_3.8-2
## [113] Rsamtools_2.12.0 cli_3.3.0
## [115] XVector_0.36.0 MASS_7.3-57
## [117] mgcv_1.8-40 tidyselect_1.1.2
## [119] stringi_1.7.6 highr_0.9
## [121] yaml_2.3.5 locfit_1.5-9.5
## [123] ggrepel_0.9.1 grid_4.2.0
## [125] sass_0.4.1 tools_4.2.0
## [127] parallel_4.2.0 rstudioapi_0.13
## [129] snowfall_1.84-6.1 gridExtra_2.3
## [131] farver_2.1.0 Rtsne_0.16
## [133] digest_0.6.29 BiocManager_1.30.17
## [135] flexclust_1.4-1 shiny_1.7.1
## [137] mnem_1.12.0 fpc_2.2-9
## [139] ppcor_1.1 Rcpp_1.0.8.3
## [141] broom_0.8.0 BiocVersion_3.15.2
## [143] later_1.3.0 org.Hs.eg.db_3.15.0
## [145] httr_1.4.2 ggdendro_0.1.23
## [147] AnnotationDbi_1.58.0 kernlab_0.9-30
## [149] naturalsort_0.1.3 Rdpack_2.3
## [151] colorspace_2.0-3 rvest_1.0.2
## [153] XML_3.99-0.9 fs_1.5.2
## [155] splines_4.2.0 RBGL_1.72.0
## [157] statmod_1.4.36 sn_2.0.2
## [159] expm_0.999-6 graphlayouts_0.8.0
## [161] multtest_2.52.0 flexmix_2.3-17
## [163] xtable_1.8-4 jsonlite_1.8.0
## [165] tidygraph_1.2.1 corpcor_1.6.10
## [167] modeltools_0.2-23 R6_2.5.1
## [169] gmodels_2.18.1 TFisher_0.2.0
## [171] pillar_1.7.0 htmltools_0.5.2
## [173] mime_0.12 glue_1.6.2
## [175] fastmap_1.1.0 BiocParallel_1.30.0
## [177] class_7.3-20 interactiveDisplayBase_1.34.0
## [179] codetools_0.2-18 tsne_0.1-3.1
## [181] mvtnorm_1.1-3 utf8_1.2.2
## [183] lattice_0.20-45 bslib_0.3.1
## [185] logger_0.2.2 numDeriv_2016.8-1.1
## [187] curl_4.3.2 gtools_3.9.2
## [189] magick_2.7.3 survival_3.3-1
## [191] limma_3.52.0 rmarkdown_2.14
## [193] fastICA_1.2-3 munsell_0.5.0
## [195] e1071_1.7-9 fastcluster_1.2.3
## [197] GenomeInfoDbData_1.2.8 reshape2_1.4.4
## [199] haven_2.5.0 gtable_0.3.0
## [201] rbibutils_2.2.8
Sales, Gabriele, Enrica Calura, Duccio Cavalieri, and Chiara Romualdi. 2012. “Graphite-a Bioconductor Package to Convert Pathway Topology to Gene Network.” BMC Bioinformatics 13 (1): 20.