Single-cell RNA sequencing data normalization


[Up] [Top]

Documentation for package ‘bayNorm’ version 1.14.0

Help Pages

AdjustSIZE_fun Adjust MME size estimate
asMatrix Rcpp version: as.matrix
as_matrix Rcpp version's as.matrix
bayNorm A wrapper function of prior estimation and bayNorm function
bayNorm_sup bayNorm with estimated parameters as input
BB_Fun Estimating size for each gene by either 1D or 2D maximization of marginal distribution
BetaFun Estimate capture efficiency for cells
Check_input Check input
DownSampling Binomial downsampling
EstPrior Estimate size and mu for Negative Binomial distribution for each gene using MME method
EstPrior_rcpp Estimate size and mu for Negative Binomial distribution for each gene using MME method (Rcpp version)
EstPrior_sprcpp Estimate size and mu for Negative Binomial distribution for each gene using MME method (Rcpp version, sp_mat)
EXAMPLE_DATA_list A subset of Grun et al (2014) data: 2i samples
NOISY_FUN Noisy gene detection
noisy_gene_detection A wrapper function for noisy gene detection from raw data. his produces synthetic control, performs bayNorm on both real cell data and synthetic controls and does noisy gene detection.
Prior_fun A wrapper function of 'EstPrior' and 'AdjustSIZE_fun'
SyntheticControl Generate synthetic control
t_sp Transpose of sparse matrix