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1 Overview and Background
The methods in this package assess the performance of a predictor of multi-

label annotations, such that labels are drawn from an ontology structured as
a directed acyclic graph (DAG). The package was designed to work specifically
with the Gene Ontology (GO) [Ashburner et al., 2000], but functionality has
been embedded that will allow users to define their own ontology in addition to
probability distributions associated with “entities" in the given ontology. The
basic inputs to the package are sets of true GO terms associated with each data-
point (be it a gene or protein), and sets of predicted annotations with associated
confidence values in the interval [0, 1]. The SemDist package facilitates the
calculation of several statistics relating to the performance of a given predictor,
all of which utilize the concept of information accretion as their foundation
[Clark and Radivojac, 2013].

1.1 Metric definitions
Briefly, the concept of information accretion arises from interpreting an ontology
as a Bayesian network. In this framework, the joint probability of a set of
“states" in the network (in this case true or false values associated to terms) is
calculated by considering the conditional probability of each individual variable
given its parents.

Very simply, information accretion is calculated by considering the condi-
tional probability of a term given its parents,

ia(v) =
1

Pr(v|P(v))
, (1)

where P(v) refers to the parents of vertex v. Using information accretion the
information content of a set of terms T , representing a consistent subgraph from
the overall DAG, can then be calculated as

i(T ) =
∑
v∈T

ia(v). (2)

Although the SemDist package calculates several information accretion based
metrics users might be more familiar with such as precision, recall, and speci-
ficity; the hallmarks of the package are the previously introduced metrics mis-
information and remaining uncertainty.

Specifically, the remaining uncertainty about a protein’s true annotation
corresponds to the information about the protein that is not yet provided by
the graph P . More formally, we express remaining uncertainty (ru) as

ru(T, P ) =
∑

v∈T\P

ia(v), (3)

which is simply the total information content of the nodes in the ontology that
are contained in true annotation T but not in the predicted annotation P .
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Note that, in a slight abuse of notation, we apply set operations to graphs to
manipulate only the vertices of these graphs.

The misinformation introduced by the classifier corresponds to the total
information content of the nodes along incorrect paths in the prediction graph
P . More formally, misinformation is expressed as

mi(T, P ) =
∑

v∈P\T

ia(v), (4)

which quantifies how misleading a predicted annotation is.
For a more thorough, formal treatment of the theory behind these metrics,

see Clark and Radivojac [2013] and Clark [2014].
Equations (3) and (4) illustrate calculating remaining uncertainty and mis-

information in a very simple case where there is a single data point and no
probabilities associated with each predicted term. SemDist performs calcula-
tions by averaging over the entire set of proteins used in evaluation, i.e.

ru(τ) =
1

n

n∑
i=1

ru(Ti, Pi(τ)) (5)

and

mi(τ) =
1

n

n∑
i=1

mi(Ti, Pi(τ)) (6)

where n is the number of proteins in the data set, Ti is the true set of terms for
protein xi, and Pi(τ) is the set of predicted terms for protein xi given decision
threshold τ .

Once the set of terms with scores greater than or equal to τ is determined,
the set Pi(τ) is composed of the unique union of the ancestors of all predicted
terms. As the decision threshold is moved from its minimum (0) to its maximum
value (1), the pairs of (ru(τ),mi(τ)) will result in a curve in 2D space. We refer
to such a curve using (ru(τ),mi(τ))τ . Removing the normalizing constant ( 1n )
from the above equations would result in the total remaining uncertainty and
misinformation associated with a database of proteins and a set of predictions.

Finally, to provide a single performance measure which can be used to rank
and evaluate protein function prediction algorithms, we introduced semantic
distance as the minimum distance from the origin to the curve (ru(τ),mi(τ))τ .
More formally, the semantic distance Sk is defined as

Sk = min
τ

(ruk(τ) +mik(τ))
1
k , (7)

where k is a positive integer. Setting k = 2 results in the minimum Euclidean
distance on the curve from the origin.

We have also generalize the definitions of precision and recall into their
information formulation. Here, precision and recall can be expressed as

3



pr(T, P (τ)) =

∑
v∈T∩P (τ)

ia(v)∑
v∈P (τ)

ia(v)
(8)

and

rc(T, P (τ)) =

∑
v∈T∩P (τ)

ia(v)∑
v∈T

ia(v)
. (9)

Precision pr(τ) and recall rc(τ) can then be calculated as averages over the
database of proteins for each threshold τ , as in Equations Equations (5) and (6).

Our framework also facilitates calculating specificity

sp(T, P (τ)) =

∑
v∈T c∩P c(τ)

ia(v)∑
v∈T c

ia(v)
(10)

where T c represents the complement of set T . Combining specificity and recall
(sensitivity) facilitate plotting an ROC curve and calculating AUROC.

Finally, we facilitate the calculation of semantic similarity,

ss(T, P (τ)) =
∑

ia(v)
v∈T∩P (τ)

, (11)

a formulation similar to that defined by Resnik [1995] and Lord et al. [2003].
This package allows for straightforward calculation of these metrics. It pro-

vides a set of methods for calculating the information accretion for each term
in a given ontology in addition to providing pre-calculated values for a set of
organisms.

2 Installation and Requirements
Install the SemDist package on your version of R with the BiocManager::install
function. The package requires R version 2.10.0 or greater and Bioconductor
version 2.14 or greater. The annotate, AnnotationDbi, and GO.db packages are
also required for functionality.

> BiocManager::install("SemDist")
> library(SemDist)

3 Calculating information accretion values
The simplest way to use SemDist is to use one of the provided data sets con-
taining information accretion values. Information accretion values were pre-
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calculated for each organism using Bioconductor AnnotationData Packages [Bio-
conductor, 2014]. These pre-calculated values can be found in the data/ direc-
tory of the SemDist package. (Note that in addition, all other test files used in
the following examples can be accessed by the user in the extdata/ directory).
Calculations for human protein annotations were performed using only anno-
tations supported by experimental evidence codes (all other species data were
calculated with all available annotations).

Information accretion values can be recalculated by the user or calculated
using different evidence codes using the computeIA function.

> # Examine built-in IA data
> data("Info_Accretion_mouse_CC", package="SemDist")
> head(IAccr)

GO:0000015 GO:0000109 GO:0000110 GO:0000118 GO:0000120 GO:0000123
4.569856 6.111738 2.700440 2.975517 0.000000 2.409170

> # Calculate IA, specify evidence codes
> # Requires downloading annotation data package
> BiocManager::install("org.Hs.eg.db")
> IAccr <- computeIA("MF", "human", evcodes=c("EXP", "IC"))

Users can define their own ontology and annotations. The computeIA func-
tion can then calculate information accretion for each term, or entity, in the
custom ontology according to Equation (1).

Ontologies should be specified using a tab-delimited file indicating every
parent-child relationship in the ontology; with the first column designating the
parent name and the second column identifying the child name. The annotations
file should have the same format as the true annotations file used above where
annotations represent terms drawn from the specified ontology.

> # Calculate IA, specify ontology and annotations
> ontfile <- system.file("extdata", "mfo_ontology.txt",
+ package="SemDist")
> annotations <- system.file("extdata", "MFO_LABELS_TEST.txt",
+ package="SemDist")
> IAccr <- computeIA("my", "values", specify.ont=TRUE,
+ myont=ontfile, specify.annotations=TRUE,
+ annotfile=annotations)

It is also possible to specify your own ontology and use Bioconductor Anno-
tationData annotations, although it should be pointed out that using a version
of the ontology other than that associated with the AnnotationData annotations
may result in terms not being found.

> # Calculate IA, specify ontology
> IAccr <- computeIA("MF", "human", specify.ont=TRUE,
+ myont=ontfile, specify.annotations=FALSE)
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When the ontology is specified but annotations are not, annotations are
taken from the specified organism. (Note that this may require the installation
of databases not provided in the package). The recommended method is to
specify both, as is the case in the second example.

The information accretion data generated in this way can be used in the
findRUMI and RUMIcurve functions (which will be discussed below).

4 Getting Started with RU-MI Calculations
Before any of the evaluation metrics in this package can be utilized, two user-
provided data sets are needed in the working directory:

1. A file containing true annotations of the protein sequences being looked
at.

2. A file containing the annotations predicted by the function predictor along
with a [0− 1] probability assigned to each annotation.

These files should take the form of tab-delineated text, with the first column
being sequence identifiers, the second column being GO identifiers (of the form
"GO:0005615"), and the third column (in the case of the prediction file) being
a valid number in the interval [0, 1].

> # Sample true, prediction files included with SemDist:
> truefile <- system.file("extdata", "MFO_LABELS_TEST.txt",
+ package="SemDist")
> predfile <- system.file("extdata", "MFO_PREDS_TEST.txt",
+ package="SemDist")
> predictions <- read.table(predfile, colClasses = "character")
> head(predictions)

V1 V2 V3
1 INO4_YEAST GO:0003674 0.464
2 INO4_YEAST GO:0030528 0.464
3 INO4_YEAST GO:0016564 0.441
4 INO4_YEAST GO:0016563 0.464
5 INO4_YEAST GO:0030234 0.400
6 INO4_YEAST GO:0060589 0.400

Given these basic data sets, remaining uncertainty and misinformation can
be calculated according to Equation (3) and Equation (4) using the findRUMI
function in addition to the package’s built in data sets.

As a simple example we show how one can calculate remaining uncertainty
and misinformation for a single threshold (τ = 0.75),

> rumiTable <- findRUMI("MF", "human", 0.75, truefile, predfile)
> avgRU <- mean(rumiTable$RU)
> avgMI <- mean(rumiTable$MI)
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where information accretion data from the molecular function portion of
the ontology terms annotating human sequences were used (denoted "MF" and
"human" in the function call).

The returned rumiTable variable should contains a data frame with the
remaining uncertainty values for each sequence in the first column and the cor-
responding misinformation values in the second column. Single-number metrics
can be obtained by averaging across the entire set.

As mentioned in the above section, user-created IA variables from computeIA
output can be used to specify the information accretion values used in the
calculation of RU and MI via the IAccr argument:

> # A sample IA file that comes with the SemDist package.
> myIA <- system.file("extdata", "myIA.rda", package="SemDist")
> load(myIA)
> # "MF" and "human" are present only for naming purposes
> # since IA is taken from myIA.rda
> rumiTable <- findRUMI("MF", "human", 0.75, truefile, predfile,
+ IAccr = IA)

5 Creating a RU-MI Curve
The average values of remaining uncertainty and misinformation across multiple
thresholds in the interval [0, 1] as specified by Equations (5) and (6) can be
calculated. Using the same true/prediction files and specifying a set increment
of 0.05 which τ is increased

> avgRUMIvals <- RUMIcurve("MF", "human", 0.05, truefile, predfile)
> firstset <- avgRUMIvals[[1]]
> plot(firstset$RU, firstset$MI)
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The RUMIcurve function will accept multiple prediction files (as a character
vector) as input, and actually returns a list containing the values calculated for
each set of predictions; hence the need for indexing into the first element to get
the curve data. The firstset variable contains a data frame with the average
RU and MI values for each threshold the function calculated for. In this case,
the increment was set to 0.05.

The plot visualizes how remaining uncertainty and misinformation change
as the decision threshold is varried. If multiple predictions are input they can
be quickly compared.

Semantic distance can be obtained in a straightforward manner from the
points in the RU-MI curve according to Equation (7):

> # Minimize distance from origin over all points in RUMI curve:
>
> semdist <- min(sqrt(firstset$MI^2 + firstset$RU^2))
> semdist

[1] 8.980514

6 Additional metrics
Related metrics can also be output by the RUMIcurve function. The data frames
that are returned also contain an "SS" column which contains the semantic
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similarity for a given threshold calculated as specified by Equation (11). Setting
the boolean parameter add.prec.rec to TRUE will cause precision, recall, and
specificity values to be included as well. Doing the same for add.weighted will
output weighted remaining uncertainty, weighted misinformation, and weighted
semantic similarity. The weighted metrics assign a weight to each RU or MI
value for all the sequences based on how much of the total information accretion
that sequence accounts. See Equation (8), Equation (9), and Equation (10) for
the formal definitions of these calculations.

> rumiout <- RUMIcurve("MF", "human", 0.05, truefile, predfile,
+ add.prec.rec=TRUE, add.weighted=TRUE)
> firstset <- rumiout[[1]]
> plot(firstset$WRU, firstset$WMI)
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