
An Overview of the S4Vectors package

Patrick Aboyoun, Michael Lawrence, Hervé Pagès

Edited: February 2018; Compiled: April 26, 2022

Contents

1 Introduction . 1

2 Vector-like and list-like objects 2

2.1 Vector-like objects . 2
2.1.1 Subsetting a vector-like object 3
2.1.2 Concatenating vector-like objects 4
2.1.3 Looping over subsequences of vector-like objects 4
2.1.4 More on Rle objects . 5

2.2 List-like objects . 7

3 DataFrame and DataFrameList objects 8

4 Vector Annotations . 8

5 Session Information . 8

1 Introduction
The S4Vectors package provides a framework for representing vector-like and list-like objects
as S4 objects. It defines two central virtual classes, Vector and List, and a set of generic
functions that extend the semantic of ordinary vectors and lists in R. Package developers
can easily implement vector-like or list-like objects as Vector and/or List derivatives. A few
low-level Vector and List derivatives are implemented in the S4Vectors package itself e.g.
Hits, Rle, and DataFrame). Many more are implemented in the IRanges and GenomicRanges
infrastructure packages, and in many other Bioconductor packages.

In this vignette, we will rely on simple, illustrative example datasets, rather than large, real-
world data, so that each data structure and algorithm can be explained in an intuitive,
graphical manner. We expect that packages that apply S4Vectors to a particular problem
domain will provide vignettes with relevant, realistic examples.

The S4Vectors package is available at bioconductor.org and can be downloaded via BiocMan

ager::install:

> if (!require("BiocManager"))

+ install.packages("BiocManager")

> BiocManager::install("S4Vectors")

http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors

An Overview of the S4Vectors package

> library(S4Vectors)

2 Vector-like and list-like objects
In the context of the S4Vectors package, a vector-like object is an ordered finite collection
of elements. All vector-like objects have three main properties: (1) a notion of length or
number of elements, (2) the ability to extract elements to create new vector-like objects, and
(3) the ability to be concatenated with one or more vector-like objects to form larger vector-
like objects. The main functions for these three operations are length, [, and c. Supporting
these operations provide a great deal of power and many vector-like object manipulations can
be constructed using them.

Some vector-like objects can also have a list-like semantic, which means that individual
elements can be extracted with [[.

In S4Vectors and many other Bioconductor packages, vector-like and list-like objects derive
from the Vector and List virtual classes, respectively. Note that List is a subclass of Vector.

The following subsections describe each in turn.

2.1 Vector-like objects
As a first example of vector-like objects, we’ll look at Rle objects. In R, atomic sequences
are typically stored in atomic vectors. But there are times when these object become too
large to manage in memory. When there are lots of consecutive repeats in the sequence, the
data can be compressed and managed in memory through a run-length encoding where a
data value is paired with a run length. For example, the sequence {1, 1, 1, 2, 3, 3} can be
represented as values = {1, 2, 3}, run lengths = {3, 1, 2}.

The Rle class defined in the S4Vectors package is used to represent a run-length encoded
(compressed) sequence of logical, integer, numeric, complex, character, raw, or factor values.
Note that the Rle class extends the Vector virtual class:

> showClass("Rle")

Class "Rle" [package "S4Vectors"]

Slots:

Name: values lengths elementMetadata

Class: vector_OR_factor integer_OR_LLint DataFrame_OR_NULL

Name: metadata

Class: list

Extends:

Class "Vector", directly

Class "Annotated", by class "Vector", distance 2

Class "vector_OR_Vector", by class "Vector", distance 2

One way to construct Rle objects is through the Rle constructor function:

2

http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors

An Overview of the S4Vectors package

> set.seed(0)

> lambda <- c(rep(0.001, 4500), seq(0.001, 10, length=500),

+ seq(10, 0.001, length=500))

> xVector <- rpois(1e7, lambda)

> yVector <- rpois(1e7, lambda[c(251:length(lambda), 1:250)])

> xRle <- Rle(xVector)

> yRle <- Rle(yVector)

Rle objects are vector-like objects:

> length(xRle)

[1] 10000000

> xRle[1]

integer-Rle of length 1 with 1 run

Lengths: 1

Values : 0

> zRle <- c(xRle, yRle)

2.1.1 Subsetting a vector-like object

As with ordinary R atomic vectors, it is often necessary to subset one sequence from another.
When this subsetting does not duplicate or reorder the elements being extracted, the result is
called a subsequence. In general, the [function can be used to construct a new sequence or
extract a subsequence, but its interface is often inconvenient and not amenable to optimiza-
tion. To compensate for this, the S4Vectors package supports seven additional functions for
sequence extraction:

1. window - Extracts a subsequence over a specified region.

2. subset - Extracts the subsequence specified by a logical vector.

3. head - Extracts a consecutive subsequence containing the first n elements.

4. tail - Extracts a consecutive subsequence containing the last n elements.

5. rev - Creates a new sequence with the elements in the reverse order.

6. rep - Creates a new sequence by repeating sequence elements.

The following code illustrates how these functions are used on an Rle vector:

> xSnippet <- window(xRle, 4751, 4760)

> xSnippet

integer-Rle of length 10 with 9 runs

Lengths: 1 1 1 1 1 1 1 1 2

Values : 4 6 5 4 6 2 6 7 5

> head(xSnippet)

integer-Rle of length 6 with 6 runs

Lengths: 1 1 1 1 1 1

Values : 4 6 5 4 6 2

> tail(xSnippet)

3

http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors

An Overview of the S4Vectors package

integer-Rle of length 6 with 5 runs

Lengths: 1 1 1 1 2

Values : 6 2 6 7 5

> rev(xSnippet)

integer-Rle of length 10 with 9 runs

Lengths: 2 1 1 1 1 1 1 1 1

Values : 5 7 6 2 6 4 5 6 4

> rep(xSnippet, 2)

integer-Rle of length 20 with 18 runs

Lengths: 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2

Values : 4 6 5 4 6 2 6 7 5 4 6 5 4 6 2 6 7 5

> subset(xSnippet, xSnippet >= 5L)

integer-Rle of length 7 with 5 runs

Lengths: 1 1 2 1 2

Values : 6 5 6 7 5

2.1.2 Concatenating vector-like objects

The S4Vectors package uses two generic functions, c and append, for concatenating two
Vector derivatives. The methods for Vector objects follow the definition that these two
functions are given the base package.

> c(xSnippet, rev(xSnippet))

integer-Rle of length 20 with 17 runs

Lengths: 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1

Values : 4 6 5 4 6 2 6 7 5 7 6 2 6 4 5 6 4

> append(xSnippet, xSnippet, after=3)

integer-Rle of length 20 with 18 runs

Lengths: 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2

Values : 4 6 5 4 6 5 4 6 2 6 7 5 4 6 2 6 7 5

2.1.3 Looping over subsequences of vector-like objects

In R, for looping can be an expensive operation. To compensate for this, the S4Vectors
package provides aggregate and shiftApply methods (shiftApply is a new generic function
defined in S4Vectors) to perform calculations over subsequences of vector-like objects.

The aggregate function combines sequence extraction functionality of the window function
with looping capabilities of the sapply function. For example, here is some code to compute
medians across a moving window of width 3 using the function aggregate:

> xSnippet

integer-Rle of length 10 with 9 runs

Lengths: 1 1 1 1 1 1 1 1 2

Values : 4 6 5 4 6 2 6 7 5

> aggregate(xSnippet, start=1:8, width=3, FUN=median)

4

http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/base
http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors

An Overview of the S4Vectors package

235 240 245 250 255 260 265
0.

85
06

0.
85

10
0.

85
14

0.
85

18
shifts

co
rr

s

Figure 1: Correlation between xRle and yRle for various shifts

[1] 5 5 5 4 6 6 6 5

The shiftApply function is a looping operation involving two vector-like objects whose ele-
ments are lined up via a positional shift operation. For example, the elements of xRle and
yRle were simulated from Poisson distributions with the mean of element i from yRle being
equivalent to the mean of element i + 250 from xRle. If we did not know the size of the
shift, we could estimate it by finding the shift that maximizes the correlation between xRle

and yRle.

> cor(xRle, yRle)

[1] 0.5739224

> shifts <- seq(235, 265, by=3)

> corrs <- shiftApply(shifts, yRle, xRle, FUN=cor)

> plot(shifts, corrs)

The result is shown in Fig. 1.

2.1.4 More on Rle objects

When there are lots of consecutive repeats, the memory savings through an RLE can be quite
dramatic. For example, the xRle object occupies less than one third of the space of the
original xVector object, while storing the same information:

> as.vector(object.size(xRle) / object.size(xVector))

[1] 0.3020726

> identical(as.vector(xRle), xVector)

[1] TRUE

The functions runValue and runLength extract the run values and run lengths from an Rle
object respectively:

5

http://bioconductor.org/packages/S4Vectors

An Overview of the S4Vectors package

> head(runValue(xRle))

[1] 0 1 0 1 0 1

> head(runLength(xRle))

[1] 780 1 208 1 1599 1

The Rle class supports many of the basic methods associated with R atomic vectors includ-
ing the Ops, Math, Math2, Summary, and Complex group generics. Here is a example of
manipulating Rle objects using methods from the Ops group:

> xRle > 0

logical-Rle of length 10000000 with 197127 runs

Lengths: 780 1 208 1 1599 ... 1 91 1 927

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

> xRle + yRle

integer-Rle of length 10000000 with 1957707 runs

Lengths: 780 1 208 1 13 1 413 ... 5 1 91 1 507 1 419

Values : 0 1 0 1 0 1 0 ... 0 1 0 1 0 1 0

> xRle > 0 | yRle > 0

logical-Rle of length 10000000 with 210711 runs

Lengths: 780 1 208 1 13 ... 1 507 1 419

Values : FALSE TRUE FALSE TRUE FALSE ... TRUE FALSE TRUE FALSE

Here are some from the Summary group:

> range(xRle)

[1] 0 26

> sum(xRle > 0 | yRle > 0)

[1] 2105185

And here is one from the Math group:

> log1p(xRle)

numeric-Rle of length 10000000 with 1510219 runs

Lengths: 780 1 208 ... 91 1 927

Values : 0.000000 0.693147 0.000000 ... 0.000000 0.693147 0.000000

As with atomic vectors, the cor and shiftApply functions operate on Rle objects:

> cor(xRle, yRle)

[1] 0.5739224

> shiftApply(249:251, yRle, xRle,

+ FUN=function(x, y) {var(x, y) / (sd(x) * sd(y))})

[1] 0.8519138 0.8517324 0.8517725

For more information on the methods supported by the Rle class, consult the Rle man page.

6

http://bioconductor.org/packages/S4Vectors

An Overview of the S4Vectors package

2.2 List-like objects
Just as with ordinary R list objects, List-derived objects support [[for element extraction, c
for concatenating, and lapply/sapply for looping. lapply and sapply are familiar to many R
users since they are the standard functions for looping over the elements of an R list object.

In addition, the S4Vectors package introduces the endoapply function to perform an endo-
morphism equivalent to lapply, i.e. it returns a List derivative of the same class as the input
rather than a list object.

An example of List derivative is the DataFrame class:

> showClass("DataFrame")

Virtual Class "DataFrame" [package "S4Vectors"]

Slots:

Name: elementType elementMetadata metadata

Class: character DataFrame_OR_NULL list

Extends:

Class "RectangularData", directly

Class "List", directly

Class "DataFrame_OR_NULL", directly

Class "Vector", by class "List", distance 2

Class "list_OR_List", by class "List", distance 2

Class "Annotated", by class "List", distance 3

Class "vector_OR_Vector", by class "List", distance 3

Known Subclasses: "DFrame"

One way to construct DataFrame objects is through the DataFrame constructor function:

> df <- DataFrame(x=xRle, y=yRle)

> sapply(df, class)

x y

"Rle" "Rle"

> sapply(df, summary)

x y

Min. 0.0000000 0.0000000

1st Qu. 0.0000000 0.0000000

Median 0.0000000 0.0000000

Mean 0.9090338 0.9096009

3rd Qu. 0.0000000 0.0000000

Max. 26.0000000 27.0000000

> sapply(as.data.frame(df), summary)

x y

Min. 0.0000000 0.0000000

1st Qu. 0.0000000 0.0000000

Median 0.0000000 0.0000000

7

http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/S4Vectors

An Overview of the S4Vectors package

Mean 0.9090338 0.9096009

3rd Qu. 0.0000000 0.0000000

Max. 26.0000000 27.0000000

> endoapply(df, `+`, 0.5)

DataFrame with 10000000 rows and 2 columns

x y

<Rle> <Rle>

1 0.5 0.5

2 0.5 0.5

3 0.5 0.5

4 0.5 0.5

5 0.5 0.5

...

9999996 0.5 0.5

9999997 0.5 0.5

9999998 0.5 0.5

9999999 0.5 0.5

10000000 0.5 0.5

For more information on DataFrame objects, consult the DataFrame man page.

See the “An Overview of the IRanges package” vignette in the IRanges package for many
more examples of List derivatives.

3 DataFrame and DataFrameList objects
TODO

4 Vector Annotations
Often when one has a collection of objects, there is a need to attach metadata that describes
the collection in some way. Two kinds of metadata can be attached to a Vector object:

1. Metadata about the object as a whole: this metadata is accessed via the metadata

accessor and is represented as an ordinary list;

2. Metadata about the individual elements of the object: this metadata is accessed via the
mcols accessor (mcols stands for metadata columns) and is represented as a DataFrame
object. This DataFrame object can be thought of as the result of binding together one
or several vector-like objects (the metadata columns) of the same length as the Vector
object. Each row of the DataFrame object annotates the corresponding element of the
Vector object.

5 Session Information
Here is the output of sessionInfo() on the system on which this document was compiled:

R version 4.2.0 RC (2022-04-19 r82224)

Platform: x86_64-apple-darwin17.0 (64-bit)

8

http://bioconductor.org/packages/S4Vectors
http://bioconductor.org/packages/IRanges
http://bioconductor.org/packages/IRanges

An Overview of the S4Vectors package

Running under: macOS Mojave 10.14.6

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats4 stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] graph_1.74.0 ShortRead_1.54.0

[3] GenomicAlignments_1.32.0 SummarizedExperiment_1.26.0

[5] Biobase_2.56.0 MatrixGenerics_1.8.0

[7] matrixStats_0.62.0 Rsamtools_2.12.0

[9] GenomicRanges_1.48.0 Biostrings_2.64.0

[11] GenomeInfoDb_1.32.0 XVector_0.36.0

[13] BiocParallel_1.30.0 IRanges_2.30.0

[15] S4Vectors_0.34.0 BiocGenerics_0.42.0

[17] Matrix_1.4-1

loaded via a namespace (and not attached):

[1] compiler_4.2.0 RColorBrewer_1.1-3

[3] BiocManager_1.30.17 bitops_1.0-7

[5] tools_4.2.0 zlibbioc_1.42.0

[7] digest_0.6.29 evaluate_0.15

[9] lattice_0.20-45 png_0.1-7

[11] rlang_1.0.2 DelayedArray_0.22.0

[13] cli_3.3.0 yaml_2.3.5

[15] parallel_4.2.0 xfun_0.30

[17] fastmap_1.1.0 GenomeInfoDbData_1.2.8

[19] hwriter_1.3.2.1 knitr_1.38

[21] grid_4.2.0 jpeg_0.1-9

[23] rmarkdown_2.14 latticeExtra_0.6-29

[25] htmltools_0.5.2 BiocStyle_2.24.0

[27] RCurl_1.98-1.6 crayon_1.5.1

9

http://bioconductor.org/packages/S4Vectors

	1 Introduction
	2 Vector-like and list-like objects
	2.1 Vector-like objects
	2.1.1 Subsetting a vector-like object
	2.1.2 Concatenating vector-like objects
	2.1.3 Looping over subsequences of vector-like objects
	2.1.4 More on Rle objects

	2.2 List-like objects

	3 DataFrame and DataFrameList objects
	4 Vector Annotations
	5 Session Information

