Installation

To install and load NBAMSeq

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1       6       2      31       3     277       2       2     225     125
gene2     144      52     320     227     201       8    1332     101       1
gene3       2     198      53     233      26     428       2      10       1
gene4      11     112       4      17       2       1       2     110     128
gene5     441       1     687     493       1      26     333      39       8
gene6       2     244     196       1      70       2      18       2      74
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1        3      208        1      125       76       53       40        4
gene2       90       15      198      193       11       28        1        2
gene3      193        1        1       36        5      104       16       19
gene4       72        1       10       35      299      276       12        1
gene5       65        7      220       71      422        1       17       13
gene6       54        3       17      144       26       19       14       98
      sample18 sample19 sample20
gene1        3       50        1
gene2      835       58       62
gene3        5      156       14
gene4       17       94       68
gene5       16      127        5
gene6       97        6       23

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

           pheno       var1       var2      var3 var4
sample1 57.65134  0.5268087 -0.2648824 0.5646721    1
sample2 56.21438  1.2247643 -1.5918931 0.4407165    0
sample3 54.16733 -1.5694569 -3.4102249 0.1754285    0
sample4 79.66353  0.1023319 -2.4764168 1.1539970    1
sample5 41.77933  0.1231109  0.9325656 1.3110931    0
sample6 42.49407 -1.2275982  0.7340348 0.8788385    0

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

Several other arguments in NBAMSeq function are available for users to customize the analysis.

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 7 columns
       baseMean       edf      stat    pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1   50.5974   1.00016 0.0217389  0.883380  0.973057   207.522   214.492
gene2  181.2666   1.00011 0.0173308  0.895588  0.973057   250.038   257.008
gene3   63.6090   1.00010 0.3457426  0.556593  0.713581   207.712   214.682
gene4   52.5189   1.00007 0.5515138  0.457732  0.614579   206.950   213.920
gene5  114.8820   1.00007 0.6811788  0.409214  0.598133   232.496   239.466
gene6   41.1169   1.00013 1.0892859  0.296782  0.529967   199.555   206.525

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 8 columns
       baseMean       coef        SE       stat    pvalue      padj       AIC
      <numeric>  <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene1   50.5974  0.3184932  0.444484  0.7165460 0.4736543 0.7775811   207.522
gene2  181.2666  0.7763077  0.415537  1.8682036 0.0617337 0.3086685   250.038
gene3   63.6090 -1.0118466  0.406480 -2.4892907 0.0127998 0.0914273   207.712
gene4   52.5189  0.0332261  0.401148  0.0828275 0.9339887 0.9853732   206.950
gene5  114.8820  0.4456503  0.407559  1.0934608 0.2741916 0.6177151   232.496
gene6   41.1169 -0.0126651  0.339556 -0.0372989 0.9702467 0.9853732   199.555
            BIC
      <numeric>
gene1   214.492
gene2   257.008
gene3   214.682
gene4   213.920
gene5   239.466
gene6   206.525

For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

DataFrame with 6 rows and 8 columns
       baseMean      coef        SE       stat    pvalue      padj       AIC
      <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric> <numeric>
gene1   50.5974 -0.119292  1.212595 -0.0983774 0.9216326  0.940441   207.522
gene2  181.2666 -2.798283  1.135954 -2.4633764 0.0137635  0.108602   250.038
gene3   63.6090 -0.431731  1.110548 -0.3887548 0.6974576  0.814497   207.712
gene4   52.5189 -0.700243  1.087133 -0.6441194 0.5194980  0.774408   206.950
gene5  114.8820 -1.207484  1.115359 -1.0825965 0.2789875  0.536515   232.496
gene6   41.1169 -2.236475  0.921317 -2.4274763 0.0152043  0.108602   199.555
            BIC
      <numeric>
gene1   214.492
gene2   257.008
gene3   214.682
gene4   213.920
gene5   239.466
gene6   206.525

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

DataFrame with 6 rows and 7 columns
        baseMean       edf      stat      pvalue       padj       AIC       BIC
       <numeric> <numeric> <numeric>   <numeric>  <numeric> <numeric> <numeric>
gene40   50.8071   1.00005  14.10899 0.000172707 0.00863533   200.237   207.207
gene9    62.2331   1.00004   8.84270 0.002944605 0.07361513   187.788   194.758
gene19   66.4655   1.00008   5.98469 0.014437934 0.22136323   215.733   222.703
gene39   55.7375   1.00010   4.74010 0.029477130 0.22136323   205.287   212.257
gene42   56.3588   1.00012   4.67781 0.030561844 0.22136323   203.448   210.419
gene41   88.6974   1.00006   4.58586 0.032242411 0.22136323   218.829   225.799

Session info

R version 4.1.1 (2021-08-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] ggplot2_3.3.5               BiocParallel_1.28.0        
 [3] NBAMSeq_1.10.0              SummarizedExperiment_1.24.0
 [5] Biobase_2.54.0              GenomicRanges_1.46.0       
 [7] GenomeInfoDb_1.30.0         IRanges_2.28.0             
 [9] S4Vectors_0.32.0            BiocGenerics_0.40.0        
[11] MatrixGenerics_1.6.0        matrixStats_0.61.0         

loaded via a namespace (and not attached):
 [1] httr_1.4.2             sass_0.4.0             bit64_4.0.5           
 [4] jsonlite_1.7.2         splines_4.1.1          bslib_0.3.1           
 [7] assertthat_0.2.1       highr_0.9              blob_1.2.2            
[10] GenomeInfoDbData_1.2.7 yaml_2.2.1             pillar_1.6.4          
[13] RSQLite_2.2.8          lattice_0.20-45        glue_1.4.2            
[16] digest_0.6.28          RColorBrewer_1.1-2     XVector_0.34.0        
[19] colorspace_2.0-2       htmltools_0.5.2        Matrix_1.3-4          
[22] DESeq2_1.34.0          XML_3.99-0.8           pkgconfig_2.0.3       
[25] genefilter_1.76.0      zlibbioc_1.40.0        purrr_0.3.4           
[28] xtable_1.8-4           scales_1.1.1           tibble_3.1.5          
[31] annotate_1.72.0        mgcv_1.8-38            KEGGREST_1.34.0       
[34] farver_2.1.0           generics_0.1.1         ellipsis_0.3.2        
[37] withr_2.4.2            cachem_1.0.6           survival_3.2-13       
[40] magrittr_2.0.1         crayon_1.4.1           memoise_2.0.0         
[43] evaluate_0.14          fansi_0.5.0            nlme_3.1-153          
[46] tools_4.1.1            lifecycle_1.0.1        stringr_1.4.0         
[49] locfit_1.5-9.4         munsell_0.5.0          DelayedArray_0.20.0   
[52] AnnotationDbi_1.56.0   Biostrings_2.62.0      compiler_4.1.1        
[55] jquerylib_0.1.4        rlang_0.4.12           grid_4.1.1            
[58] RCurl_1.98-1.5         labeling_0.4.2         bitops_1.0-7          
[61] rmarkdown_2.11         gtable_0.3.0           DBI_1.1.1             
[64] R6_2.5.1               knitr_1.36             dplyr_1.0.7           
[67] fastmap_1.1.0          bit_4.0.4              utf8_1.2.2            
[70] stringi_1.7.5          parallel_4.1.1         Rcpp_1.0.7            
[73] vctrs_0.3.8            geneplotter_1.72.0     png_0.1-7             
[76] tidyselect_1.1.1       xfun_0.27             

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.