ISAnalytics 1.4.3
In this vignette we explain in more detail how to perform sharing analyses with ISAnalytics and its dedicated sharing functions.
ISAnalytics
can be installed quickly in different ways:
devtools
There are always 2 versions of the package active:
RELEASE
is the latest stable versionDEVEL
is the development version, it is the most up-to-date version where
all new features are introducedRELEASE version:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ISAnalytics")
DEVEL version:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
# The following initializes usage of Bioc devel
BiocManager::install(version='devel')
BiocManager::install("ISAnalytics")
RELEASE:
if (!require(devtools)) {
install.packages("devtools")
}
devtools::install_github("calabrialab/ISAnalytics",
ref = "RELEASE_3_14",
dependencies = TRUE,
build_vignettes = TRUE)
DEVEL:
if (!require(devtools)) {
install.packages("devtools")
}
devtools::install_github("calabrialab/ISAnalytics",
ref = "master",
dependencies = TRUE,
build_vignettes = TRUE)
ISAnalytics
has a verbose option that allows some functions to print
additional information to the console while they’re executing.
To disable this feature do:
# DISABLE
options("ISAnalytics.verbose" = FALSE)
# ENABLE
options("ISAnalytics.verbose" = TRUE)
Some functions also produce report in a user-friendly HTML format, to set this feature:
# DISABLE HTML REPORTS
options("ISAnalytics.reports" = FALSE)
# ENABLE HTML REPORTS
options("ISAnalytics.reports" = TRUE)
ISAnalytics provides the function is_sharing()
for computing automated
sharing counts. The function has several arguments that can be tuned according
to user needs.
sharing_1 <- is_sharing(agg,
group_key = c("SubjectID", "CellMarker",
"Tissue", "TimePoint"),
n_comp = 2,
is_count = TRUE,
relative_is_sharing = TRUE,
minimal = TRUE,
include_self_comp = FALSE,
keep_genomic_coord = TRUE)
#> Calculating combinations...
#> Done!
sharing_1
#> g1 g2 shared is_coord count_g1 count_g2 count_union on_g1 on_g2
#> 1: PT001_MNC_BM_0030 PT001_MNC_BM_0060 21 <data.table[21x3]> 54 114 147 38.888889 18.421053
#> 2: PT001_MNC_BM_0030 PT001_MNC_PB_0060 8 <data.table[8x3]> 54 59 105 14.814815 13.559322
#> 3: PT001_MNC_BM_0060 PT001_MNC_PB_0060 29 <data.table[29x3]> 114 59 144 25.438596 49.152542
#> 4: PT001_MNC_PB_0030 PT001_MNC_PB_0060 10 <data.table[10x3]> 28 59 77 35.714286 16.949153
#> 5: PT001_MNC_BM_0030 PT002_MNC_BM_0030 0 <data.table[0x3]> 54 98 152 0.000000 0.000000
#> 6: PT001_MNC_BM_0060 PT002_MNC_BM_0030 1 <data.table[1x3]> 114 98 211 0.877193 1.020408
#> 7: PT001_MNC_PB_0060 PT002_MNC_BM_0030 1 <data.table[1x3]> 59 98 156 1.694915 1.020408
#> 8: PT001_MNC_PB_0030 PT002_MNC_BM_0030 0 <data.table[0x3]> 28 98 126 0.000000 0.000000
#> 9: PT001_MNC_BM_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 54 18 72 0.000000 0.000000
#> 10: PT001_MNC_BM_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 114 18 132 0.000000 0.000000
#> 11: PT001_MNC_PB_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 59 18 77 0.000000 0.000000
#> 12: PT002_MNC_BM_0030 PT002_MNC_PB_0060 8 <data.table[8x3]> 98 18 108 8.163265 44.444444
#> 13: PT002_MNC_PB_0030 PT002_MNC_PB_0060 7 <data.table[7x3]> 15 18 26 46.666667 38.888889
#> 14: PT001_MNC_PB_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 28 18 46 0.000000 0.000000
#> 15: PT002_MNC_BM_0060 PT002_MNC_PB_0060 5 <data.table[5x3]> 33 18 46 15.151515 27.777778
#> 16: PT001_MNC_BM_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 54 15 69 0.000000 0.000000
#> 17: PT001_MNC_BM_0060 PT002_MNC_PB_0030 1 <data.table[1x3]> 114 15 128 0.877193 6.666667
#> 18: PT001_MNC_PB_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 59 15 74 0.000000 0.000000
#> 19: PT002_MNC_BM_0030 PT002_MNC_PB_0030 3 <data.table[3x3]> 98 15 110 3.061224 20.000000
#> 20: PT001_MNC_PB_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 28 15 43 0.000000 0.000000
#> 21: PT002_MNC_BM_0060 PT002_MNC_PB_0030 2 <data.table[2x3]> 33 15 46 6.060606 13.333333
#> 22: PT001_MNC_BM_0030 PT001_MNC_PB_0030 7 <data.table[7x3]> 54 28 75 12.962963 25.000000
#> 23: PT001_MNC_BM_0060 PT001_MNC_PB_0030 7 <data.table[7x3]> 114 28 135 6.140351 25.000000
#> 24: PT001_MNC_BM_0030 PT002_MNC_BM_0060 1 <data.table[1x3]> 54 33 86 1.851852 3.030303
#> 25: PT001_MNC_BM_0060 PT002_MNC_BM_0060 0 <data.table[0x3]> 114 33 147 0.000000 0.000000
#> 26: PT001_MNC_PB_0060 PT002_MNC_BM_0060 0 <data.table[0x3]> 59 33 92 0.000000 0.000000
#> 27: PT002_MNC_BM_0030 PT002_MNC_BM_0060 5 <data.table[5x3]> 98 33 126 5.102041 15.151515
#> 28: PT001_MNC_PB_0030 PT002_MNC_BM_0060 0 <data.table[0x3]> 28 33 61 0.000000 0.000000
#> g1 g2 shared is_coord count_g1 count_g2 count_union on_g1 on_g2
#> on_union
#> 1: 14.2857143
#> 2: 7.6190476
#> 3: 20.1388889
#> 4: 12.9870130
#> 5: 0.0000000
#> 6: 0.4739336
#> 7: 0.6410256
#> 8: 0.0000000
#> 9: 0.0000000
#> 10: 0.0000000
#> 11: 0.0000000
#> 12: 7.4074074
#> 13: 26.9230769
#> 14: 0.0000000
#> 15: 10.8695652
#> 16: 0.0000000
#> 17: 0.7812500
#> 18: 0.0000000
#> 19: 2.7272727
#> 20: 0.0000000
#> 21: 4.3478261
#> 22: 9.3333333
#> 23: 5.1851852
#> 24: 1.1627907
#> 25: 0.0000000
#> 26: 0.0000000
#> 27: 3.9682540
#> 28: 0.0000000
#> on_union
In this configuration we set:
agg
grouping_key
. In this
specific case, our groups will be identified by a unique combination of
SubjectID
, CellMarker
, Tissue
and TimePoint
n_comp
represents the number of comparisons to compute: 2 means we’re
interested in knowing the sharing for PAIRS of distinct groupsis_count
to TRUE
relative_is_sharing
if set to TRUE
adds sharing expressed as a percentage,
more precisely it adds a column on_g1
that is calculated as the
absolute number of shared integrations divided by the cardinality of the
first group, on_g2
is analogous but is computed on the cardinality of the
second group and finally on_union
is computed on the cardinality
of the union of the two groups.minimal
to TRUE
we tell the function to avoid
redundant comparisons: in this way only combinations and not permutations
are included in the output tableinclude_self_comp
adds rows in the table that are labelled with the same
group: these rows always have a 100% sharing with all other groups. There are
few scenarios where this is useful, but for now we set it to FALSE
since
we don’t need itkeep_genomic_coord
allows us to keep the genomic coordinates of the
shared integration sites as a separate tablesharing_1_a <- is_sharing(agg,
group_key = c("SubjectID", "CellMarker",
"Tissue", "TimePoint"),
n_comp = 3,
is_count = TRUE,
relative_is_sharing = TRUE,
minimal = TRUE,
include_self_comp = FALSE,
keep_genomic_coord = TRUE)
#> Calculating combinations...
#> Done!
sharing_1_a
#> g1 g2 g3 shared is_coord count_g1 count_g2 count_g3
#> 1: PT001_MNC_BM_0030 PT001_MNC_BM_0060 PT001_MNC_PB_0060 6 <data.table[6x3]> 54 114 59
#> 2: PT001_MNC_BM_0030 PT001_MNC_PB_0030 PT001_MNC_PB_0060 1 <data.table[1x3]> 54 28 59
#> 3: PT001_MNC_BM_0060 PT001_MNC_PB_0030 PT001_MNC_PB_0060 2 <data.table[2x3]> 114 28 59
#> 4: PT001_MNC_BM_0030 PT001_MNC_BM_0060 PT002_MNC_BM_0030 0 <data.table[0x3]> 54 114 98
#> 5: PT001_MNC_BM_0030 PT001_MNC_PB_0060 PT002_MNC_BM_0030 0 <data.table[0x3]> 54 59 98
#> 6: PT001_MNC_BM_0060 PT001_MNC_PB_0060 PT002_MNC_BM_0030 1 <data.table[1x3]> 114 59 98
#> 7: PT001_MNC_PB_0030 PT001_MNC_PB_0060 PT002_MNC_BM_0030 0 <data.table[0x3]> 28 59 98
#> 8: PT001_MNC_BM_0030 PT001_MNC_PB_0030 PT002_MNC_BM_0030 0 <data.table[0x3]> 54 28 98
#> 9: PT001_MNC_BM_0060 PT001_MNC_PB_0030 PT002_MNC_BM_0030 0 <data.table[0x3]> 114 28 98
#> 10: PT001_MNC_BM_0030 PT001_MNC_BM_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 54 114 18
#> 11: PT001_MNC_BM_0030 PT001_MNC_PB_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 54 59 18
#> 12: PT001_MNC_BM_0060 PT001_MNC_PB_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 114 59 18
#> 13: PT001_MNC_PB_0030 PT001_MNC_PB_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 28 59 18
#> 14: PT001_MNC_BM_0030 PT002_MNC_BM_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 54 98 18
#> 15: PT001_MNC_BM_0060 PT002_MNC_BM_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 114 98 18
#> 16: PT001_MNC_PB_0060 PT002_MNC_BM_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 59 98 18
#> 17: PT001_MNC_PB_0030 PT002_MNC_BM_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 28 98 18
#> 18: PT001_MNC_BM_0030 PT002_MNC_PB_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 54 15 18
#> 19: PT001_MNC_BM_0060 PT002_MNC_PB_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 114 15 18
#> 20: PT001_MNC_PB_0060 PT002_MNC_PB_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 59 15 18
#> 21: PT002_MNC_BM_0030 PT002_MNC_PB_0030 PT002_MNC_PB_0060 1 <data.table[1x3]> 98 15 18
#> 22: PT001_MNC_PB_0030 PT002_MNC_PB_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 28 15 18
#> 23: PT002_MNC_BM_0060 PT002_MNC_PB_0030 PT002_MNC_PB_0060 1 <data.table[1x3]> 33 15 18
#> 24: PT001_MNC_BM_0030 PT001_MNC_PB_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 54 28 18
#> 25: PT001_MNC_BM_0060 PT001_MNC_PB_0030 PT002_MNC_PB_0060 0 <data.table[0x3]> 114 28 18
#> 26: PT001_MNC_BM_0030 PT002_MNC_BM_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 54 33 18
#> 27: PT001_MNC_BM_0060 PT002_MNC_BM_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 114 33 18
#> 28: PT001_MNC_PB_0060 PT002_MNC_BM_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 59 33 18
#> 29: PT002_MNC_BM_0030 PT002_MNC_BM_0060 PT002_MNC_PB_0060 1 <data.table[1x3]> 98 33 18
#> 30: PT001_MNC_PB_0030 PT002_MNC_BM_0060 PT002_MNC_PB_0060 0 <data.table[0x3]> 28 33 18
#> 31: PT001_MNC_BM_0030 PT001_MNC_BM_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 54 114 15
#> 32: PT001_MNC_BM_0030 PT001_MNC_PB_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 54 59 15
#> 33: PT001_MNC_BM_0060 PT001_MNC_PB_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 114 59 15
#> 34: PT001_MNC_PB_0030 PT001_MNC_PB_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 28 59 15
#> 35: PT001_MNC_BM_0030 PT002_MNC_BM_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 54 98 15
#> 36: PT001_MNC_BM_0060 PT002_MNC_BM_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 114 98 15
#> 37: PT001_MNC_PB_0060 PT002_MNC_BM_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 59 98 15
#> 38: PT001_MNC_PB_0030 PT002_MNC_BM_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 28 98 15
#> 39: PT001_MNC_BM_0030 PT001_MNC_PB_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 54 28 15
#> 40: PT001_MNC_BM_0060 PT001_MNC_PB_0030 PT002_MNC_PB_0030 0 <data.table[0x3]> 114 28 15
#> 41: PT001_MNC_BM_0030 PT002_MNC_BM_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 54 33 15
#> 42: PT001_MNC_BM_0060 PT002_MNC_BM_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 114 33 15
#> 43: PT001_MNC_PB_0060 PT002_MNC_BM_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 59 33 15
#> 44: PT002_MNC_BM_0030 PT002_MNC_BM_0060 PT002_MNC_PB_0030 1 <data.table[1x3]> 98 33 15
#> 45: PT001_MNC_PB_0030 PT002_MNC_BM_0060 PT002_MNC_PB_0030 0 <data.table[0x3]> 28 33 15
#> 46: PT001_MNC_BM_0030 PT001_MNC_BM_0060 PT001_MNC_PB_0030 5 <data.table[5x3]> 54 114 28
#> 47: PT001_MNC_BM_0030 PT001_MNC_BM_0060 PT002_MNC_BM_0060 0 <data.table[0x3]> 54 114 33
#> 48: PT001_MNC_BM_0030 PT001_MNC_PB_0060 PT002_MNC_BM_0060 0 <data.table[0x3]> 54 59 33
#> 49: PT001_MNC_BM_0060 PT001_MNC_PB_0060 PT002_MNC_BM_0060 0 <data.table[0x3]> 114 59 33
#> 50: PT001_MNC_PB_0030 PT001_MNC_PB_0060 PT002_MNC_BM_0060 0 <data.table[0x3]> 28 59 33
#> 51: PT001_MNC_BM_0030 PT002_MNC_BM_0030 PT002_MNC_BM_0060 0 <data.table[0x3]> 54 98 33
#> 52: PT001_MNC_BM_0060 PT002_MNC_BM_0030 PT002_MNC_BM_0060 0 <data.table[0x3]> 114 98 33
#> 53: PT001_MNC_PB_0060 PT002_MNC_BM_0030 PT002_MNC_BM_0060 0 <data.table[0x3]> 59 98 33
#> 54: PT001_MNC_PB_0030 PT002_MNC_BM_0030 PT002_MNC_BM_0060 0 <data.table[0x3]> 28 98 33
#> 55: PT001_MNC_BM_0030 PT001_MNC_PB_0030 PT002_MNC_BM_0060 0 <data.table[0x3]> 54 28 33
#> 56: PT001_MNC_BM_0060 PT001_MNC_PB_0030 PT002_MNC_BM_0060 0 <data.table[0x3]> 114 28 33
#> g1 g2 g3 shared is_coord count_g1 count_g2 count_g3
#> count_union on_g1 on_g2 on_g3 on_union
#> 1: 175 11.111111 5.263158 10.169492 3.4285714
#> 2: 117 1.851852 3.571429 1.694915 0.8547009
#> 3: 157 1.754386 7.142857 3.389831 1.2738854
#> 4: 244 0.000000 0.000000 0.000000 0.0000000
#> 5: 202 0.000000 0.000000 0.000000 0.0000000
#> 6: 241 0.877193 1.694915 1.020408 0.4149378
#> 7: 174 0.000000 0.000000 0.000000 0.0000000
#> 8: 173 0.000000 0.000000 0.000000 0.0000000
#> 9: 232 0.000000 0.000000 0.000000 0.0000000
#> 10: 165 0.000000 0.000000 0.000000 0.0000000
#> 11: 123 0.000000 0.000000 0.000000 0.0000000
#> 12: 162 0.000000 0.000000 0.000000 0.0000000
#> 13: 95 0.000000 0.000000 0.000000 0.0000000
#> 14: 162 0.000000 0.000000 0.000000 0.0000000
#> 15: 221 0.000000 0.000000 0.000000 0.0000000
#> 16: 166 0.000000 0.000000 0.000000 0.0000000
#> 17: 136 0.000000 0.000000 0.000000 0.0000000
#> 18: 80 0.000000 0.000000 0.000000 0.0000000
#> 19: 139 0.000000 0.000000 0.000000 0.0000000
#> 20: 85 0.000000 0.000000 0.000000 0.0000000
#> 21: 114 1.020408 6.666667 5.555556 0.8771930
#> 22: 54 0.000000 0.000000 0.000000 0.0000000
#> 23: 53 3.030303 6.666667 5.555556 1.8867925
#> 24: 93 0.000000 0.000000 0.000000 0.0000000
#> 25: 153 0.000000 0.000000 0.000000 0.0000000
#> 26: 99 0.000000 0.000000 0.000000 0.0000000
#> 27: 160 0.000000 0.000000 0.000000 0.0000000
#> 28: 105 0.000000 0.000000 0.000000 0.0000000
#> 29: 132 1.020408 3.030303 5.555556 0.7575758
#> 30: 74 0.000000 0.000000 0.000000 0.0000000
#> 31: 161 0.000000 0.000000 0.000000 0.0000000
#> 32: 120 0.000000 0.000000 0.000000 0.0000000
#> 33: 158 0.000000 0.000000 0.000000 0.0000000
#> 34: 92 0.000000 0.000000 0.000000 0.0000000
#> 35: 164 0.000000 0.000000 0.000000 0.0000000
#> 36: 222 0.000000 0.000000 0.000000 0.0000000
#> 37: 168 0.000000 0.000000 0.000000 0.0000000
#> 38: 138 0.000000 0.000000 0.000000 0.0000000
#> 39: 90 0.000000 0.000000 0.000000 0.0000000
#> 40: 149 0.000000 0.000000 0.000000 0.0000000
#> 41: 99 0.000000 0.000000 0.000000 0.0000000
#> 42: 159 0.000000 0.000000 0.000000 0.0000000
#> 43: 105 0.000000 0.000000 0.000000 0.0000000
#> 44: 137 1.020408 3.030303 6.666667 0.7299270
#> 45: 74 0.000000 0.000000 0.000000 0.0000000
#> 46: 166 9.259259 4.385965 17.857143 3.0120482
#> 47: 179 0.000000 0.000000 0.000000 0.0000000
#> 48: 137 0.000000 0.000000 0.000000 0.0000000
#> 49: 177 0.000000 0.000000 0.000000 0.0000000
#> 50: 110 0.000000 0.000000 0.000000 0.0000000
#> 51: 179 0.000000 0.000000 0.000000 0.0000000
#> 52: 239 0.000000 0.000000 0.000000 0.0000000
#> 53: 184 0.000000 0.000000 0.000000 0.0000000
#> 54: 154 0.000000 0.000000 0.000000 0.0000000
#> 55: 107 0.000000 0.000000 0.000000 0.0000000
#> 56: 168 0.000000 0.000000 0.000000 0.0000000
#> count_union on_g1 on_g2 on_g3 on_union
Changing the n_comp
to 3 means that we want to calculate the sharing between
3 different groups. Note that the shared
column contains the counts of
integrations that are shared by ALL groups, which is equivalent to
a set intersection.
Beware of the fact that the more comparisons are requested the more time the computation requires.
minimal = FALSE
Setting minimal = FALSE
produces all possible permutations of the groups
and the corresponding values. In combination with include_self_comp = TRUE
,
this is useful when we want to know the sharing between pairs of groups and
plot results as a heatmap.
sharing_1_b <- is_sharing(agg,
group_key = c("SubjectID", "CellMarker",
"Tissue", "TimePoint"),
n_comp = 2,
is_count = TRUE,
relative_is_sharing = TRUE,
minimal = FALSE,
include_self_comp = TRUE)
#> Calculating combinations...
#> Calculating self groups (requested)...
#> Calculating permutations (requested)...
#> Done!
sharing_1_b
#> g1 g2 shared count_g1 count_g2 count_union on_g1 on_g2 on_union
#> 1: PT001_MNC_BM_0030 PT001_MNC_BM_0030 54 54 54 54 100.000000 100.000000 100.0000000
#> 2: PT001_MNC_BM_0030 PT001_MNC_BM_0060 21 54 114 147 38.888889 18.421053 14.2857143
#> 3: PT001_MNC_BM_0060 PT001_MNC_BM_0030 21 114 54 147 18.421053 38.888889 14.2857143
#> 4: PT001_MNC_BM_0060 PT001_MNC_BM_0060 114 114 114 114 100.000000 100.000000 100.0000000
#> 5: PT001_MNC_BM_0030 PT001_MNC_PB_0060 8 54 59 105 14.814815 13.559322 7.6190476
#> 6: PT001_MNC_PB_0060 PT001_MNC_BM_0030 8 59 54 105 13.559322 14.814815 7.6190476
#> 7: PT001_MNC_BM_0060 PT001_MNC_PB_0060 29 114 59 144 25.438596 49.152542 20.1388889
#> 8: PT001_MNC_PB_0060 PT001_MNC_BM_0060 29 59 114 144 49.152542 25.438596 20.1388889
#> 9: PT001_MNC_PB_0060 PT001_MNC_PB_0060 59 59 59 59 100.000000 100.000000 100.0000000
#> 10: PT001_MNC_PB_0030 PT001_MNC_PB_0060 10 28 59 77 35.714286 16.949153 12.9870130
#> 11: PT001_MNC_PB_0060 PT001_MNC_PB_0030 10 59 28 77 16.949153 35.714286 12.9870130
#> 12: PT001_MNC_BM_0030 PT002_MNC_BM_0030 0 54 98 152 0.000000 0.000000 0.0000000
#> 13: PT002_MNC_BM_0030 PT001_MNC_BM_0030 0 98 54 152 0.000000 0.000000 0.0000000
#> 14: PT001_MNC_BM_0060 PT002_MNC_BM_0030 1 114 98 211 0.877193 1.020408 0.4739336
#> 15: PT002_MNC_BM_0030 PT001_MNC_BM_0060 1 98 114 211 1.020408 0.877193 0.4739336
#> 16: PT001_MNC_PB_0060 PT002_MNC_BM_0030 1 59 98 156 1.694915 1.020408 0.6410256
#> 17: PT002_MNC_BM_0030 PT001_MNC_PB_0060 1 98 59 156 1.020408 1.694915 0.6410256
#> 18: PT002_MNC_BM_0030 PT002_MNC_BM_0030 98 98 98 98 100.000000 100.000000 100.0000000
#> 19: PT001_MNC_PB_0030 PT002_MNC_BM_0030 0 28 98 126 0.000000 0.000000 0.0000000
#> 20: PT002_MNC_BM_0030 PT001_MNC_PB_0030 0 98 28 126 0.000000 0.000000 0.0000000
#> 21: PT001_MNC_BM_0030 PT002_MNC_PB_0060 0 54 18 72 0.000000 0.000000 0.0000000
#> 22: PT002_MNC_PB_0060 PT001_MNC_BM_0030 0 18 54 72 0.000000 0.000000 0.0000000
#> 23: PT001_MNC_BM_0060 PT002_MNC_PB_0060 0 114 18 132 0.000000 0.000000 0.0000000
#> 24: PT002_MNC_PB_0060 PT001_MNC_BM_0060 0 18 114 132 0.000000 0.000000 0.0000000
#> 25: PT001_MNC_PB_0060 PT002_MNC_PB_0060 0 59 18 77 0.000000 0.000000 0.0000000
#> 26: PT002_MNC_PB_0060 PT001_MNC_PB_0060 0 18 59 77 0.000000 0.000000 0.0000000
#> 27: PT002_MNC_BM_0030 PT002_MNC_PB_0060 8 98 18 108 8.163265 44.444444 7.4074074
#> 28: PT002_MNC_PB_0060 PT002_MNC_BM_0030 8 18 98 108 44.444444 8.163265 7.4074074
#> 29: PT002_MNC_PB_0060 PT002_MNC_PB_0060 18 18 18 18 100.000000 100.000000 100.0000000
#> 30: PT002_MNC_PB_0030 PT002_MNC_PB_0060 7 15 18 26 46.666667 38.888889 26.9230769
#> 31: PT002_MNC_PB_0060 PT002_MNC_PB_0030 7 18 15 26 38.888889 46.666667 26.9230769
#> 32: PT001_MNC_PB_0030 PT002_MNC_PB_0060 0 28 18 46 0.000000 0.000000 0.0000000
#> 33: PT002_MNC_PB_0060 PT001_MNC_PB_0030 0 18 28 46 0.000000 0.000000 0.0000000
#> 34: PT002_MNC_BM_0060 PT002_MNC_PB_0060 5 33 18 46 15.151515 27.777778 10.8695652
#> 35: PT002_MNC_PB_0060 PT002_MNC_BM_0060 5 18 33 46 27.777778 15.151515 10.8695652
#> 36: PT001_MNC_BM_0030 PT002_MNC_PB_0030 0 54 15 69 0.000000 0.000000 0.0000000
#> 37: PT002_MNC_PB_0030 PT001_MNC_BM_0030 0 15 54 69 0.000000 0.000000 0.0000000
#> 38: PT001_MNC_BM_0060 PT002_MNC_PB_0030 1 114 15 128 0.877193 6.666667 0.7812500
#> 39: PT002_MNC_PB_0030 PT001_MNC_BM_0060 1 15 114 128 6.666667 0.877193 0.7812500
#> 40: PT001_MNC_PB_0060 PT002_MNC_PB_0030 0 59 15 74 0.000000 0.000000 0.0000000
#> 41: PT002_MNC_PB_0030 PT001_MNC_PB_0060 0 15 59 74 0.000000 0.000000 0.0000000
#> 42: PT002_MNC_BM_0030 PT002_MNC_PB_0030 3 98 15 110 3.061224 20.000000 2.7272727
#> 43: PT002_MNC_PB_0030 PT002_MNC_BM_0030 3 15 98 110 20.000000 3.061224 2.7272727
#> 44: PT002_MNC_PB_0030 PT002_MNC_PB_0030 15 15 15 15 100.000000 100.000000 100.0000000
#> 45: PT001_MNC_PB_0030 PT002_MNC_PB_0030 0 28 15 43 0.000000 0.000000 0.0000000
#> 46: PT002_MNC_PB_0030 PT001_MNC_PB_0030 0 15 28 43 0.000000 0.000000 0.0000000
#> 47: PT002_MNC_BM_0060 PT002_MNC_PB_0030 2 33 15 46 6.060606 13.333333 4.3478261
#> 48: PT002_MNC_PB_0030 PT002_MNC_BM_0060 2 15 33 46 13.333333 6.060606 4.3478261
#> 49: PT001_MNC_BM_0030 PT001_MNC_PB_0030 7 54 28 75 12.962963 25.000000 9.3333333
#> 50: PT001_MNC_PB_0030 PT001_MNC_BM_0030 7 28 54 75 25.000000 12.962963 9.3333333
#> 51: PT001_MNC_BM_0060 PT001_MNC_PB_0030 7 114 28 135 6.140351 25.000000 5.1851852
#> 52: PT001_MNC_PB_0030 PT001_MNC_BM_0060 7 28 114 135 25.000000 6.140351 5.1851852
#> 53: PT001_MNC_PB_0030 PT001_MNC_PB_0030 28 28 28 28 100.000000 100.000000 100.0000000
#> 54: PT001_MNC_BM_0030 PT002_MNC_BM_0060 1 54 33 86 1.851852 3.030303 1.1627907
#> 55: PT002_MNC_BM_0060 PT001_MNC_BM_0030 1 33 54 86 3.030303 1.851852 1.1627907
#> 56: PT001_MNC_BM_0060 PT002_MNC_BM_0060 0 114 33 147 0.000000 0.000000 0.0000000
#> 57: PT002_MNC_BM_0060 PT001_MNC_BM_0060 0 33 114 147 0.000000 0.000000 0.0000000
#> 58: PT001_MNC_PB_0060 PT002_MNC_BM_0060 0 59 33 92 0.000000 0.000000 0.0000000
#> 59: PT002_MNC_BM_0060 PT001_MNC_PB_0060 0 33 59 92 0.000000 0.000000 0.0000000
#> 60: PT002_MNC_BM_0030 PT002_MNC_BM_0060 5 98 33 126 5.102041 15.151515 3.9682540
#> 61: PT002_MNC_BM_0060 PT002_MNC_BM_0030 5 33 98 126 15.151515 5.102041 3.9682540
#> 62: PT001_MNC_PB_0030 PT002_MNC_BM_0060 0 28 33 61 0.000000 0.000000 0.0000000
#> 63: PT002_MNC_BM_0060 PT001_MNC_PB_0030 0 33 28 61 0.000000 0.000000 0.0000000
#> 64: PT002_MNC_BM_0060 PT002_MNC_BM_0060 33 33 33 33 100.000000 100.000000 100.0000000
#> g1 g2 shared count_g1 count_g2 count_union on_g1 on_g2 on_union
heatmaps <- sharing_heatmap(sharing_1_b)
The function sharing_heatmap()
automatically plots sharing between 2 groups.
There are several arguments to this function that allow us to obtain heatmaps
for the absolute sharing values or the relative (percentage) values.
heatmaps$absolute
heatmaps$on_g1