Installation

To install and load NBAMSeq

Introduction

High-throughput sequencing experiments followed by differential expression analysis is a widely used approach to detect genomic biomarkers. A fundamental step in differential expression analysis is to model the association between gene counts and covariates of interest. NBAMSeq is a flexible statistical model based on the generalized additive model and allows for information sharing across genes in variance estimation. Specifically, we model the logarithm of mean gene counts as sums of smooth functions with the smoothing parameters and coefficients estimated simultaneously by a nested iteration. The variance is estimated by the Bayesian shrinkage approach to fully exploit the information across all genes.

The workflow of NBAMSeq contains three main steps:

Here we illustrate each of these steps respectively.

Data input

Users are expected to provide three parts of input, i.e. countData, colData, and design.

countData is a matrix of gene counts generated by RNASeq experiments.

      sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8 sample9
gene1      86       2      15       2       2     253     203      34       1
gene2      58      31      11      25      88     149       2      41      20
gene3       3       1     110      19      60      39      51      38     551
gene4       8       3     587     242       2     161     206      21     191
gene5     163      39      91      25       5       1      26      92       2
gene6       6       3      33     312      47      71      17     213       1
      sample10 sample11 sample12 sample13 sample14 sample15 sample16 sample17
gene1       96        3      233        1      328        1      391      413
gene2        1      338        2        2       19       65      135       91
gene3      242     1004       25        8      293       11        1       43
gene4        1        1       20        7       42      185       35        4
gene5        1      275       20       13      654       10        1       21
gene6       37       20        1        2       60      265        1       88
      sample18 sample19 sample20
gene1      463      309       53
gene2       88      112      576
gene3        2       50        1
gene4      360       69        2
gene5      457       77      206
gene6        2       17      117

colData is a data frame which contains the covariates of samples. The sample order in colData should match the sample order in countData.

           pheno       var1       var2        var3 var4
sample1 72.28458  0.6519901 -0.7124010 -1.27666549    2
sample2 38.18440 -1.5560521 -0.7883353 -0.50988764    0
sample3 78.03110 -0.2719248 -0.3702485  1.82829721    0
sample4 45.16483  0.3847899  1.2381355  0.24274274    1
sample5 54.31841 -2.7341289 -0.9211927  0.10598287    0
sample6 39.70366 -1.0945870 -0.1296539  0.01002405    0

design is a formula which specifies how to model the samples. Compared with other packages performing DE analysis including DESeq2 (Love, Huber, and Anders 2014), edgeR (Robinson, McCarthy, and Smyth 2010), NBPSeq (Di et al. 2015) and BBSeq (Zhou, Xia, and Wright 2011), NBAMSeq supports the nonlinear model of covariates via mgcv (Wood and Wood 2015). To indicate the nonlinear covariate in the model, users are expected to use s(variable_name) in the design formula. In our example, if we would like to model pheno as a nonlinear covariate, the design formula should be:

Several notes should be made regarding the design formula:

We then construct the NBAMSeqDataSet using countData, colData, and design:

class: NBAMSeqDataSet 
dim: 50 20 
metadata(1): fitted
assays(1): counts
rownames(50): gene1 gene2 ... gene49 gene50
rowData names(0):
colnames(20): sample1 sample2 ... sample19 sample20
colData names(5): pheno var1 var2 var3 var4

Differential expression analysis

Differential expression analysis can be performed by NBAMSeq function:

Several other arguments in NBAMSeq function are available for users to customize the analysis.

Pulling out DE results

Results of DE analysis can be pulled out by results function. For continuous covariates, the name argument should be specified indicating the covariate of interest. For nonlinear continuous covariates, base mean, effective degrees of freedom (edf), test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 7 columns
       baseMean       edf      stat    pvalue      padj       AIC       BIC
      <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene1  120.2233   1.00008  2.404772  0.120988  0.465340   229.438   236.408
gene2   66.2243   1.00006  0.028360  0.866434  0.904858   222.305   229.275
gene3   94.8374   1.00004  0.484840  0.486265  0.813723   222.607   229.578
gene4   96.2173   1.00041  0.244189  0.621266  0.813723   226.021   232.991
gene5   75.7973   1.00007  1.980188  0.159384  0.550438   219.694   226.664
gene6   63.8863   1.00003  1.058605  0.303553  0.661357   204.916   211.886

For linear continuous covariates, base mean, estimated coefficient, standard error, test statistics, p-value, and adjusted p-value will be returned.

DataFrame with 6 rows and 8 columns
       baseMean       coef        SE      stat     pvalue      padj       AIC
      <numeric>  <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric>
gene1  120.2233  1.0436069  0.344035  3.033434 0.00241788 0.0604469   229.438
gene2   66.2243  0.2012330  0.297098  0.677329 0.49819710 0.8303285   222.305
gene3   94.8374 -0.0450286  0.342453 -0.131488 0.89538903 0.9705086   222.607
gene4   96.2173  0.1801169  0.362934  0.496279 0.61969723 0.8852818   226.021
gene5   75.7973  0.0491319  0.321220  0.152954 0.87843433 0.9705086   219.694
gene6   63.8863 -0.2879550  0.318746 -0.903398 0.36631452 0.7894912   204.916
            BIC
      <numeric>
gene1   236.408
gene2   229.275
gene3   229.578
gene4   232.991
gene5   226.664
gene6   211.886

For discrete covariates, the contrast argument should be specified. e.g.  contrast = c("var4", "2", "0") means comparing level 2 vs. level 0 in var4.

DataFrame with 6 rows and 8 columns
       baseMean      coef        SE      stat     pvalue      padj       AIC
      <numeric> <numeric> <numeric> <numeric>  <numeric> <numeric> <numeric>
gene1  120.2233 -0.247235  0.959850 -0.257577 0.79673348  0.885259   229.438
gene2   66.2243  0.102425  0.843959  0.121363 0.90340388  0.921841   222.305
gene3   94.8374 -2.841032  0.977485 -2.906471 0.00365531  0.158402   222.607
gene4   96.2173 -0.139244  1.031161 -0.135036 0.89258316  0.921841   226.021
gene5   75.7973  2.267965  0.909787  2.492852 0.01267216  0.158402   219.694
gene6   63.8863  0.489355  0.901678  0.542716 0.58732549  0.793683   204.916
            BIC
      <numeric>
gene1   236.408
gene2   229.275
gene3   229.578
gene4   232.991
gene5   226.664
gene6   211.886

Visualization

We suggest two approaches to visualize the nonlinear associations. The first approach is to plot the smooth components of a fitted negative binomial additive model by plot.gam function in mgcv (Wood and Wood 2015). This can be done by calling makeplot function and passing in NBAMSeqDataSet object. Users are expected to provide the phenotype of interest in phenoname argument and gene of interest in genename argument.

In addition, to explore the nonlinear association of covariates, it is also instructive to look at log normalized counts vs. variable scatter plot. Below we show how to produce such plot.

DataFrame with 6 rows and 7 columns
        baseMean       edf      stat    pvalue      padj       AIC       BIC
       <numeric> <numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
gene8    35.9545   1.00006   6.31924 0.0119458  0.366456   181.774   188.744
gene24  104.3405   1.00011   5.60849 0.0178887  0.366456   238.253   245.223
gene42  133.0468   1.00016   4.96582 0.0258792  0.366456   227.839   234.809
gene15   86.0546   1.00006   4.74903 0.0293164  0.366456   218.454   225.424
gene14   49.5655   1.00008   4.10970 0.0426561  0.406607   210.345   217.316
gene36   25.8818   1.00005   3.68180 0.0550215  0.406607   180.332   187.302

Session info

R version 4.1.0 beta (2021-05-03 r80259)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.2 LTS

Matrix products: default
BLAS:   /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_GB              LC_COLLATE=C              
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ggplot2_3.3.3               BiocParallel_1.27.0        
 [3] NBAMSeq_1.9.0               SummarizedExperiment_1.23.0
 [5] Biobase_2.53.0              GenomicRanges_1.45.0       
 [7] GenomeInfoDb_1.29.0         IRanges_2.27.0             
 [9] S4Vectors_0.31.0            BiocGenerics_0.39.0        
[11] MatrixGenerics_1.5.0        matrixStats_0.58.0         

loaded via a namespace (and not attached):
 [1] httr_1.4.2             sass_0.4.0             bit64_4.0.5           
 [4] jsonlite_1.7.2         splines_4.1.0          bslib_0.2.5.1         
 [7] assertthat_0.2.1       highr_0.9              blob_1.2.1            
[10] GenomeInfoDbData_1.2.6 yaml_2.2.1             pillar_1.6.1          
[13] RSQLite_2.2.7          lattice_0.20-44        glue_1.4.2            
[16] digest_0.6.27          RColorBrewer_1.1-2     XVector_0.33.0        
[19] colorspace_2.0-1       htmltools_0.5.1.1      Matrix_1.3-3          
[22] DESeq2_1.33.0          XML_3.99-0.6           pkgconfig_2.0.3       
[25] genefilter_1.75.0      zlibbioc_1.39.0        purrr_0.3.4           
[28] xtable_1.8-4           scales_1.1.1           tibble_3.1.2          
[31] annotate_1.71.0        mgcv_1.8-35            KEGGREST_1.33.0       
[34] farver_2.1.0           generics_0.1.0         ellipsis_0.3.2        
[37] withr_2.4.2            cachem_1.0.5           survival_3.2-11       
[40] magrittr_2.0.1         crayon_1.4.1           memoise_2.0.0         
[43] evaluate_0.14          fansi_0.4.2            nlme_3.1-152          
[46] tools_4.1.0            lifecycle_1.0.0        stringr_1.4.0         
[49] locfit_1.5-9.4         munsell_0.5.0          DelayedArray_0.19.0   
[52] AnnotationDbi_1.55.0   Biostrings_2.61.0      compiler_4.1.0        
[55] jquerylib_0.1.4        rlang_0.4.11           grid_4.1.0            
[58] RCurl_1.98-1.3         labeling_0.4.2         bitops_1.0-7          
[61] rmarkdown_2.8          gtable_0.3.0           DBI_1.1.1             
[64] R6_2.5.0               knitr_1.33             dplyr_1.0.6           
[67] fastmap_1.1.0          bit_4.0.4              utf8_1.2.1            
[70] stringi_1.6.2          Rcpp_1.0.6             vctrs_0.3.8           
[73] geneplotter_1.71.0     png_0.1-7              tidyselect_1.1.1      
[76] xfun_0.23             

References

Di, Y, DW Schafer, JS Cumbie, and JH Chang. 2015. “NBPSeq: Negative Binomial Models for Rna-Sequencing Data.” R Package Version 0.3. 0, URL Http://CRAN. R-Project. Org/Package= NBPSeq.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold Change and Dispersion for Rna-Seq Data with Deseq2.” Genome Biology 15 (12): 550.

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data.” Bioinformatics 26 (1): 139–40.

Wood, Simon, and Maintainer Simon Wood. 2015. “Package ’Mgcv’.” R Package Version 1: 29.

Zhou, Yi-Hui, Kai Xia, and Fred A Wright. 2011. “A Powerful and Flexible Approach to the Analysis of Rna Sequence Count Data.” Bioinformatics 27 (19): 2672–8.