Package 'vissE'

April 12, 2022

Title Visualising Set Enrichment Analysis Results

Version 1.2.2

Description This package enables the interpretation and analysis of results from a gene set enrichment analysis using network-based and text-mining approaches. Most enrichment analyses result in large lists of significant gene sets that are difficult to interpret. Tools in this package help build a similarity-based network of significant gene sets from a gene set enrichment analysis that can then be investigated for their biological function using text-mining approaches.

biocViews Software, GeneExpression, GeneSetEnrichment, NetworkEnrichment, Network

License GPL-3

Encoding UTF-8

LazyDataCompression bzip2

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Depends R (>= 4.1)

Imports igraph, methods, plyr, ggplot2, scico, RColorBrewer, tm, ggwordcloud, GSEABase, reshape2, grDevices, ggforce, msigdb, ggrepel, textstem, tidygraph, stats, scales, ggraph

Suggests testthat, org.Hs.eg.db, org.Mm.eg.db, patchwork, singscore, knitr, rmarkdown, prettydoc, BiocStyle, pkgdown, covr

URL https://davislaboratory.github.io/vissE

BugReports https://github.com/DavisLaboratory/vissE/issues

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/vissE

git_branch RELEASE_3_14

git_last_commit 690dee2

git_last_commit_date 2021-10-27

Date/Publication 2022-04-12

Author Dharmesh D. Bhuva [aut, cre] (https://orcid.org/0000-0002-6398-9157)

Maintainer Dharmesh D. Bhuva <bhuva.d@wehi.edu.au>

2 bhuvad_theme

R topics documented:

bhuvad_theme				•				•	•		•	•	•				•	•	•	•	2
characteriseGeneset																					3
computeMsigNetwork																					4
computeMsigOverlap .																					4
computeMsigWordFreq																					5
getMsigBlacklist																					6
hgsc																					7
plotGeneStats																					7
plotMsigNetwork																					9
plotMsigPPI																					10
plotMsigWordcloud																					11

13

bhuvad_theme

Custom theme

Description

Custom theme

Usage

Index

```
bhuvad_theme(rl = 1.1)
```

Arguments

rl

a numeric, scaling factor to apply to text sizes

Value

a ggplot2 theme

```
p1 = ggplot2::ggplot()
p1 + bhuvad_theme()
```

characteriseGeneset 3

characteriseGeneset Functionally characterise a list of genes

Description

This function can be used to perform a network-based enrichment analysis of a list of genes. The list of genes are characterised based on their similarity with gene sets from the MSigDB. A network of similar gene sets is retrieved using this function.

Usage

```
characteriseGeneset(
   gs,
   thresh = 0.2,
   measure = c("ovlapcoef", "jaccard"),
   gscolcs = c("h", "c2", "c5"),
   org = c("auto", "hs", "mm")
)
```

Arguments

gs	a GeneSet object, representing the list of genes that need to be characterised.
thresh	a numeric, specifying the threshold to discard pairs of gene sets.
measure	a character, specifying the similarity measure to use: jaccard for the Jaccard Index and ovlapcoef for the Overlap Coefficient.
gscolcs	a character, listing the MSigDB collections to use as a background (defaults to h, c2, and c5). Collection types can be retrieved using msigdb::listCollections().
org	a character, specifying the organism to use. This can either be "auto" (default), "hs" or "mm".

Value

an igraph object, containing gene sets that are similar to the query set. The network contains relationships between results of the query too.

```
library(GSEABase)
data(hgsc)

#create a geneset using one of the Hallmark gene sets
mySet <- GeneSet(
   geneIds(hgsc[[2]]),
   setName = 'MySet',
   geneIdType = SymbolIdentifier()
)</pre>
```

```
#characterise the custom gene set
ig <- characteriseGeneset(mySet)
plotMsigNetwork(ig)</pre>
```

computeMsigNetwork

Compute a network using computed gene set overlap

Description

Computes an igraph object using information on gene sets and gene sets computed using the computeMsigOverlap() function.

Usage

```
computeMsigNetwork(genesetOverlap, msigGsc)
```

Arguments

genesetOverlap a data.frame, containing results of an overlap analysis computed using the computeMsigOverlap()

function.

msigGsc a GeneSetCollection object, containing gene sets used to compute overlap.

Value

an igraph object

Examples

```
data(hgsc)
ovlap <- computeMsigOverlap(hgsc)
ig <- computeMsigNetwork(ovlap, hgsc)</pre>
```

computeMsigOverlap

Compute gene set overlap

Description

Compute overlap between gene sets from a GeneSetCollection using the Jaccard index or the overlap coefficient. These values can then be used to compute a network of gene set overlaps.

computeMsigWordFreq

Usage

```
computeMsigOverlap(
  msigGsc1,
  msigGsc2 = NULL,
  thresh = 0.25,
  measure = c("jaccard", "ovlapcoef")
)
```

Arguments

msigGsc1 a GeneSetCollection object.

msigGsc2 a GeneSetCollection object or NULL if pairwise overlaps are to be computed.

thresh a numeric, specifying the threshold to discard pairs of gene sets.

measure a character, specifying the similarity measure to use: jaccard for the Jaccard

Index and ovlapcoef for the Overlap Coefficient.

Value

a data.frame, containing the overlap structure of gene sets represented as a network in the simple interaction format (SIF).

Examples

```
data(hgsc)
ovlap <- computeMsigOverlap(hgsc)</pre>
```

computeMsigWordFreq

Compute word frequencies for a single MSigDB collection

Description

Compute word frequencies for a single MSigDB collection

Usage

```
computeMsigWordFreq(
   msigGsc,
   weight = NULL,
   measure = c("tfidf", "tf"),
   version = msigdb::getMsigdbVersions(),
   org = c("auto", "hs", "mm"),
   rmwords = getMsigBlacklist()
)
```

6 getMsigBlacklist

Arguments

msigGsc	a GeneSetCollection object, containing gene sets from the MSigDB. The GSEABase::getBroadSets() function can be used to parse XML files downloaded from MSigDB.
weight	a named numeric vector, containing weights to apply to each gene-set. This can be -log10(FDR), -log10(p-value) or an enrichment score (ideally unsigned).
measure	a character, specifying how frequencies should be computed. "tf" uses term frequencies and "tfidf" (default) applies inverse document frequency weights to term frequencies.
version	a character, specifying the version of msigdb to use (see msigdb::getMsigdbVersions()).
org	a character, specifying the organism to use. This can either be "auto" (default), "hs" or "mm".

a character vector, containing a blacklist of words to discard from the analysis.

Value

rmwords

a list, containing two data.frames summarising the results of the frequency analysis on gene set names and short descriptions.

Examples

```
freq <- computeMsigWordFreq(hgsc, measure = 'tfidf')</pre>
```

getMsigBlacklist

Blacklist words for MSigDB gene set text mining

Description

List of words to discard when performing text mining MSigDB gene set names and short descriptions.

Usage

```
getMsigBlacklist(custom = c())
```

Arguments

custom

a character vector, containing list of words to add onto existing blacklist.

Value

a character vector, containing list of blacklist works

```
getMsigBlacklist('blacklist')
```

hgsc 7

hgsc

The Hallmark collection from the MSigDB

Description

The molecular signatures database (MSigDB) is a collection of over 25000 gene expression signatures. Signatures in v7.2 are divided into 9 categories. The Hallmarks collection contains gene expression signatures representing molecular processes that are hallmarks in cancer development and progression.

Usage

hgsc

Format

A GeneSetCollection object with 50 GeneSet objects representing the 50 Hallmark gene expression signatures.

References

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., ... & Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545-15550.

Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739-1740.

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database hallmark gene set collection. Cell systems, 1(6), 417-425.

plotGeneStats

Plot gene statistics for clusters of gene sets

Description

This function plots gene statistics against gene frequencies for any given cluster of gene sets. The plot can be used to identify genes that are over-represented in a cluster of gene-sets (identified based on gene-set overlaps) and have a strong statistic (e.g. log fold-chage or p-value).

8 plotGeneStats

Usage

```
plotGeneStats(
   geneStat,
   msigGsc,
   groups,
   statName = "Gene-level statistic",
   topN = 5
)
```

Arguments

geneStat a named numeric, containing the statistic to be displayed. The vector must be

named with either gene Symbols or Entrez IDs depending on annotations in

msigGsc.

msigGsc a GeneSetCollection object, containing gene sets from the MSigDB. The GSEABase::getBroadSets()

function can be used to parse XML files downloaded from MSigDB.

groups a named list, of character vectors or numeric indices specifying node groupings.

Each element of the list represent a group and contains a character vector with

node names.

statName a character, specifying the name of the statistic.

topN a numeric, specifying the number of genes to label. The top genes are those with

the largest count and statistic.

Value

a ggplot object, plotting the gene-level statistic against gene frequencies in the cluster of gene sets.

```
library(GSEABase)

data(hgsc)
groups <- list('g1' = names(hgsc)[1:25], 'g2' = names(hgsc)[26:50])

#create statistics
allgenes = unique(unlist(geneIds(hgsc)))
gstats = rnorm(length(allgenes))
names(gstats) = allgenes

#plot
plotGeneStats(gstats, hgsc, groups)</pre>
```

plotMsigNetwork 9

plotMsigNetwork	Plot a gene set overlap network

Description

Plots a network of gene set overlap with overlap computed using the computeMsigOverlap() and a graph created using computeMsigNetwork().

Usage

```
plotMsigNetwork(
   ig,
   markGroups = NULL,
   genesetStat = NULL,
   nodeSF = 1,
   edgeSF = 1,
   lytFunc = "graphopt",
   lytParams = list()
)
```

Arguments

ig an igraph object, containing a network of gene set overlaps computed using computeMsigNetwork(). markGroups a named list, of character vectors. Each element of the list represent a group and contains a character vector with node names. Up to 12 groups can be visualised in the plot. genesetStat a named numeric, statistic to project onto the nodes. These could be p-values, log fold-changes or gene set score from a singscore-based analysis. nodeSF a numeric, indicating the scaling factor to apply to node sizes. edgeSF a numeric, indicating the scaling factor to apply to edge widths. lytFunc a character, specifying the layout to use (see ggraph::create_layout()). a named list, containing additional parameters needed for the layout (see ggraph::create_layout()). lytParams

Value

```
a ggplot2 object
```

```
data(hgsc)
ovlap <- computeMsigOverlap(hgsc, thresh = 0.15)
ig <- computeMsigNetwork(ovlap, hgsc)
groups <- list(
   'g1' = c("HALLMARK_HYPOXIA", "HALLMARK_GLYCOLYSIS"),
   'g2' = c("HALLMARK_INTERFERON_GAMMA_RESPONSE")</pre>
```

10 plotMsigPPI

```
)
plotMsigNetwork(ig, markGroups = groups)
```

plotMsigPPI

Plot PPI network for gene-set clusters identified using vissE

Description

This function plots the protein-protein interaction (PPI) network for a gene-set cluster identified using vissE. The international molecular exchange (IMEx) PPI is used to obtain PPIs for genes present in a gene-set cluster.

Usage

```
plotMsigPPI(
    ppidf,
    msigGsc,
    groups,
    geneStat = NULL,
    statName = "Gene-level statistic",
    threshConfidence = 0,
    threshFrequency = 0.25,
    threshStatistic = 0,
    threshUseAbsolute = TRUE,
    topN = 5,
    nodeSF = 1,
    edgeSF = 1,
    lytFunc = "graphopt",
    lytParams = list()
)
```

Arguments

ppidf	a data.frame, containing a protein-protein interaction from the IMEx database. This can be retrieved from the msigdb::getIMEX() function.
msigGsc	a GeneSetCollection object, containing gene sets from the MSigDB. The GSEABase::getBroadSets() function can be used to parse XML files downloaded from MSigDB.
groups	a named list, of character vectors or numeric indices specifying node groupings. Each element of the list represent a group and contains a character vector with node names.

geneStat a named numeric, containing the statistic to be displayed. The vector must be named with either gene Symbols or Entrez IDs depending on annotations in

msigGsc.

statName a character, specifying the name of the statistic.

plotMsigWordcloud 11

threshConfidence

a numeric, specifying the confidence threshold to apply to determine high confidence interactions. This should be a value between 0 and 1 (default is 0).

threshFrequency

a numeric, specifying the frequency threshold to apply to determine more frequent genes in the gene-set cluster. The frequecy of a gene is computed as the proportion of gene-sets to which the gene belongs. This should be a value between 0 and 1 (default is 0.25).

threshStatistic

a numeric, specifying the threshold to apply to gene-level statistics (e.g. a log fold-change). This should be a value between 0 and 1 (default is 0).

threshUseAbsolute

a logical, indicating whether the threshStatistic threshold should be applied to absolute values (default TRUE). This can be used to threshold on statistics such as the log fold-chage from a differential expression analysis.

topN a numeric, specifying the number of genes to label. The top genes are those with

the largest count and statistic.

nodeSF a numeric, indicating the scaling factor to apply to node sizes.

edgeSF a numeric, indicating the scaling factor to apply to edge widths.

lytFunc a character, specifying the layout to use (see ggraph::create_layout()).

lytParams a named list, containing additional parameters needed for the layout (see ggraph::create_layout()).

Value

a ggplot object with the protein-protein interaction networks plot for each gene-set cluster.

Examples

```
data(hgsc)
grps = list('early' = 'HALLMARK_ESTROGEN_RESPONSE_EARLY', 'late' = 'HALLMARK_ESTROGEN_RESPONSE_LATE')
ppi = msigdb::getIMEX(org = 'hs', inferred = TRUE)
plotMsigPPI(ppi, hgsc, grps)
```

plotMsigWordcloud

Compute and plot word frequencies for multiple MSigDB collections

Description

Given a gene set collection, this function computes the word frequency of gene set names from the Molecular Signatures Database (MSigDB) collection (split by _). Word frequencies are also computed using short descriptions attached with each gene set object.

12 plotMsigWordcloud

Usage

```
plotMsigWordcloud(
   msigGsc,
   groups,
   weight = NULL,
   measure = c("tfidf", "tf"),
   version = msigdb::getMsigdbVersions(),
   org = c("auto", "hs", "mm"),
   rmwords = getMsigBlacklist(),
   type = c("Name", "Short")
)
```

Arguments

a GeneSetCollection object, containing gene sets from the MSigDB. The GSEABase::getBroadSets() function can be used to parse XML files downloaded from MSigDB.

groups a named list, of character vectors or numeric indices specifying node groupings.

Each element of the list represent a group and contains a character vector with

node names.

weight a named numeric vector, containing weights to apply to each gene-set. This can

be -log10(FDR), -log10(p-value) or an enrichment score (ideally unsigned).

measure a character, specifying how frequencies should be computed. "tf" uses term

frequencies and "tfidf" (default) applies inverse document frequency weights to

term frequencies.

version a character, specifying the version of msigdb to use (see msigdb::getMsigdbVersions()).

org a character, specifying the organism to use. This can either be "auto" (default),

"hs" or "mm".

rmwords a character vector, containing a blacklist of words to discard from the analysis.

type a character, specifying the source of text mining. Either gene set names (Name)

a character, specifying the source of text mining. Either gene

or descriptions (Short) can be used.

Value

a ggplot object.

```
data("hgsc")
groups <- list('g1' = names(hgsc)[1:25], 'g2' = names(hgsc)[26:50])
plotMsigWordcloud(hgsc, groups, rmwords = getMsigBlacklist())</pre>
```

Index

```
\ast datasets
    hgsc, 7
bhuvad\_theme, \textcolor{red}{2}
characteriseGeneset, 3
{\tt computeMsigNetwork, 4}
computeMsigNetwork(), 9
computeMsigOverlap, 4
computeMsigOverlap(), 4, 9
computeMsigWordFreq, 5
getMsigBlacklist, 6
GSEABase::getBroadSets(), 6, 8, 10, 12
hgsc, 7
msigdb::getIMEX(), 10
msigdb::listCollections(), 3
plotGeneStats, 7
plotMsigNetwork, 9
plotMsigPPI, 10
plotMsigWordcloud, 11
```