
Package ‘benchdamic’
April 12, 2022

Type Package

Title Benchmark of differential abundance methods on microbiome data

Version 1.0.0

Description Starting from a microbiome dataset (16S or WMS with absolute count
values) it is possible to perform several analysis to assess the
performances of many differential abundance detection methods. A basic and
standardized version of the main differential abundance analysis methods is
supplied but the user can also add his method to the benchmark.
The analyses focus on 4 main aspects: i) the goodness of fit of each
method's distributional assumptions on the observed count data, ii) the
ability to control the false discovery rate, iii) the within and between
method concordances, iv) the truthfulness of the findings if any apriori
knowledge is given. Several graphical functions are available for result
visualization.

License Artistic-2.0

Encoding UTF-8

Depends R (>= 4.1.0)

Imports stats, stats4, utils, methods, phyloseq, BiocParallel,
zinbwave, edgeR, DESeq2, limma, ALDEx2, corncob,
SummarizedExperiment, MAST, Seurat, metagenomeSeq, MGLM,
ggplot2, RColorBrewer, plyr, ffpe, reshape2, ggdendro,
graphics, cowplot

Suggests knitr, rmarkdown, HMP16SData, curatedMetagenomicData,
BiocStyle, testthat

VignetteBuilder knitr

LazyData TRUE

RoxygenNote 7.1.2

biocViews Metagenomics, Microbiome, DifferentialExpression,
MultipleComparison, Normalization, Preprocessing, Software

BugReports https://github.com/mcalgaro93/benchdamic/issues

git_url https://git.bioconductor.org/packages/benchdamic

1

https://github.com/mcalgaro93/benchdamic/issues

2 R topics documented:

git_branch RELEASE_3_14

git_last_commit 5175773

git_last_commit_date 2021-10-26

Date/Publication 2022-04-12

Author Matteo Calgaro [aut, cre]

Maintainer Matteo Calgaro <mcalgaro93@gmail.com>

R topics documented:
addKnowledge . 3
areaCAT . 5
checkNormalization . 6
createColors . 7
createConcordance . 8
createEnrichment . 9
createMocks . 12
createPositives . 12
createSplits . 15
createTIEC . 16
DA_ALDEx2 . 17
DA_corncob . 19
DA_DESeq2 . 21
DA_edgeR . 22
DA_limma . 24
DA_MAST . 25
DA_metagenomeSeq . 27
DA_Seurat . 28
enrichmentTest . 30
extractDA . 32
extractStatistics . 34
fitDM . 36
fitHURDLE . 36
fitModels . 37
fitNB . 38
fitZIG . 39
fitZINB . 40
getDA . 41
getPositives . 43
getStatistics . 45
iterative_ordering . 46
meanDifferences . 47
microbial_metabolism . 48
norm_CSS . 48
norm_DESeq2 . 49
norm_edgeR . 51
norm_TSS . 52

addKnowledge 3

plotConcordance . 53
plotContingency . 55
plotEnrichment . 56
plotFPR . 58
plotKS . 59
plotMD . 60
plotMutualFindings . 61
plotPositives . 63
plotQQ . 65
plotRMSE . 66
prepareObserved . 67
ps_plaque_16S . 68
ps_stool_16S . 68
RMSE . 69
runDA . 69
runMocks . 70
runNormalizations . 71
runSplits . 72
setNormalizations . 73
set_ALDEx2 . 74
set_corncob . 76
set_DESeq2 . 77
set_edgeR . 78
set_limma . 80
set_MAST . 81
set_metagenomeSeq . 82
set_Seurat . 83
weights_ZINB . 85

Index 87

addKnowledge addKnowledge

Description

Add a priori knowledge for each feature tested by a method.

Usage

addKnowledge(method, priorKnowledge, enrichmentCol, namesCol = NULL)

4 addKnowledge

Arguments

method Output of differential abundance detection method in which DA information is
extracted by the getDA function.

priorKnowledge data.frame (with feature names as row.names) containing feature level meta-
data.

enrichmentCol name of the column containing information for enrichment analysis.

namesCol name of the column containing new names for features (default namesCol =
NULL).

Value

A data.frame with a new column containing information for enrichment analysis.

See Also

createEnrichment.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

DA Analysis
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

)

DA <- getDA(method = da.limma, slot = "pValMat", colName = "adjP",
type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL)

areaCAT 5

Add a priori information
DA_info <- addKnowledge(method = DA, priorKnowledge = priorInfo,

enrichmentCol = "Type", namesCol = "newNames")

areaCAT areaCAT

Description

Compute the area between the bisector and the concordance curve.

Usage

areaCAT(concordance, plotIt = FALSE)

Arguments

concordance A long format data.frame produced by createConcordance function.

plotIt Plot the concordance (default plotIt = FALSE).

Value

A long format data.frame object with several columns:

• comparison which indicates the comparison number;

• n_features which indicates the total number of taxa in the comparison dataset;

• method1 which contains the first method name;

• method2 which contains the first method name;

• rank;

• concordance which is defined as the cardinality of the intersection of the top rank elements
of each list, divided by rank, i.e. , (L1:rank

⋂
M1:rank)/(rank), where L and M represent the

lists of the extracted statistics of method1 and method2 respectively;

• heightOver which is the distance between the bisector and the concordance value;

• areaOver which is the cumulative sum of the heightOver value.

See Also

createConcordance and plotConcordance

6 checkNormalization

Examples

data(ps_plaque_16S)

Balanced design for independent samples
my_splits <- createSplits(

object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE", balanced = TRUE, N = 10 # N = 100 suggested

)

Initialize some limma based methods
my_limma <- set_limma(design = ~ HMP_BODY_SUBSITE, coef = 2,

norm = c("TMM", "CSSmedian"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,

normalization_list = my_norm, object = ps_plaque_16S)

Concordance for p-values
concordance_pvalues <- createConcordance(

object = results, slot = "pValMat", colName = "rawP", type = "pvalue"
)

Add area over the concordance curve
concordance_area <- areaCAT(concordance = concordance_pvalues)

checkNormalization checkNormalization

Description

Check if the normalization function’s name and the method’s name to compute normalization/scaling
factors are correctly matched.

Usage

checkNormalization(fun, method, ...)

Arguments

fun a character with the name of normalization function (e.g. "norm_edgeR", "norm_DESeq2",
"norm_CSS"...).

method a character with the normalization method (e.g. "TMM", "upperquartile"... if
the fun is "norm_edgeR").

... other arguments if needed (e.g. for norm_edgeR normalizations).

createColors 7

Value

a list object containing the normalization method and its parameters.

See Also

setNormalizations, norm_edgeR, norm_DESeq2, norm_CSS, norm_TSS

Examples

Check if TMM normalization belong to "norm_edgeR"
check_TMM_normalization <- checkNormalization(fun = "norm_edgeR",

method = "TMM")

createColors createColors

Description

Produce a qualitative set of colors.

Usage

createColors(variable)

Arguments

variable character vector or factor variable.

Value

A named vector containing the color codes.

Examples

Given qualitative variable
cond <- factor(c("A", "A", "B", "B", "C", "D"),

levels = c("A", "B", "C", "D"))

Associate a color to each level (or unique value, if not a factor)
cond_colors <- createColors(cond)

8 createConcordance

createConcordance createConcordance

Description

Compute the between and within method concordances comparing the lists of extracted statistics
from the outputs of the differential abundance detection methods.

Usage

createConcordance(object, slot = "pValMat", colName = "rawP", type = "pvalue")

Arguments

object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

slot A character vector with 1 or number-of-methods-times repeats of the slot names
where to extract values for each method (default slot = "pValMat").

colName A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue" or "logfc" (default type = "pvalue").

Value

A long format data.frame object with several columns:

• comparison which indicates the comparison number;

• n_features which indicates the total number of taxa in the comparison dataset;

• method1 which contains the first method name;

• method2 which contains the first method name;

• rank;

• concordance which is defined as the cardinality of the intersection of the top rank elements
of each list, divided by rank, i.e. , (L1:rank

⋂
M1:rank)/(rank), where L and M represent the

lists of the extracted statistics of method1 and method2 respectively (averaged values between
subset1 and subset2).

See Also

extractStatistics and areaCAT.

createEnrichment 9

Examples

data(ps_plaque_16S)

Balanced design for independent samples
my_splits <- createSplits(

object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE", balanced = TRUE, N = 10 # N = 100 suggested

)

Initialize some limma based methods
my_limma <- set_limma(design = ~ HMP_BODY_SUBSITE, coef = 2,

norm = c("TMM", "CSSmedian"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,

normalization_list = my_norm, object = ps_plaque_16S)

Concordance for p-values
concordance_pvalues <- createConcordance(

object = results, slot = "pValMat", colName = "rawP", type = "pvalue"
)

Concordance for log fold changes
concordance_logfc <- createConcordance(

object = results, slot = "statInfo", colName = "logFC", type = "logfc"
)

Concordance for log fold changes in the first method and p-values in the
other
concordance_logfc_pvalues <- createConcordance(

object = results, slot = c("statInfo", "pValMat"),
colName = c("logFC", "rawP"), type = c("logfc", "pvalue")

)

createEnrichment createEnrichment

Description

Create a data.frame object with several information to perform enrichment analysis.

Usage

createEnrichment(
object,
priorKnowledge,

10 createEnrichment

enrichmentCol,
namesCol = NULL,
slot = "pValMat",
colName = "adjP",
type = "pvalue",
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,
top = NULL,
alternative = "greater",
verbose = FALSE

)

Arguments

object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

priorKnowledge data.frame (with feature names as row.names) containing feature level meta-
data.

enrichmentCol name of the column containing information for enrichment analysis.
namesCol name of the column containing new names for features (default namesCol =

NULL).
slot A character vector with 1 or number-of-methods-times repeats of the slot names

where to extract values for each method (default slot = "pValMat").
colName A character vector with 1 or number-of-methods-times repeats of the column

name of the slot where to extract values for each method (default colName =
"rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue" or "logfc" (default type = "pvalue").

direction A character vector with 1 or number-of-methods-times repeats of the statInfo’s
column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

threshold_pvalue

A single or a numeric vector of thresholds for p-values. If present, features with
p-values lower than threshold_pvalue are considered differentially abundant.
Set threshold_pvalue = 1 to not filter by p-values.

threshold_logfc

A single or a numeric vector of thresholds for log fold changes. If present,
features with log fold change absolute values higher than threshold_logfc are
considered differentially abundant. Set threshold_logfc = 0 to not filter by
log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". You can specify just the initial letter. Only used in the 2× 2 case.

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

createEnrichment 11

Value

a list of objects for each method. Each list contains:

• data a data.frame object with DA directions, statistics, and feature names;

• tables a list of 2x2 contingency tables;

• tests the list of Fisher exact tests’ p-values for each contingency table;

• summaries a list with the first element of each contingency table and its p-value (for graphical
purposes);

See Also

addKnowledge, extractDA, and enrichmentTest.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,

object = ps_plaque_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,

norm = c("TMM", "CSSmedian"))

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Enrichment analysis
enrichment <- createEnrichment(object = Plaque_16S_DA,

priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS",
slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC",
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE)

12 createPositives

createMocks createMocks

Description

Given the number of samples of the dataset from which the mocks should be created, this function
produces a data.frame object with as many rows as the number of mocks and as many columns
as the number of samples. If an odd number of samples is given, the lower even integer will be
considered in order to obtain a balanced design for the mocks.

Usage

createMocks(nsamples, N = 1000)

Arguments

nsamples an integer representing the total number of samples.

N number of mock comparison to generate.

Value

a data.frame containing N rows and nsamples columns (if even). Each cell of the data frame
contains the "grp1" or "grp2" characters which represent the mock groups pattern.

Examples

Generate the pattern for 100 mock comparisons for an experiment with 30
samples
mocks <- createMocks(nsamples = 30, N = 100)
head(mocks)

createPositives createPositives

Description

Inspect the list of p-values or/and log fold changes from the output of the differential abundance
detection methods and count the True Positives (TP) and the False Positives (FP).

createPositives 13

Usage

createPositives(
object,
priorKnowledge,
enrichmentCol,
namesCol = NULL,
slot = "pValMat",
colName = "adjP",
type = "pvalue",
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,
top = NULL,
alternative = "greater",
verbose = FALSE,
TP,
FP

)

Arguments

object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

priorKnowledge data.frame (with feature names as row.names) containing feature level meta-
data.

enrichmentCol name of the column containing information for enrichment analysis.

namesCol name of the column containing new names for features (default namesCol =
NULL).

slot A character vector with 1 or number-of-methods-times repeats of the slot names
where to extract values for each method (default slot = "pValMat").

colName A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue" or "logfc" (default type = "pvalue").

direction A character vector with 1 or number-of-methods-times repeats of the statInfo’s
column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

threshold_pvalue

A single or a numeric vector of thresholds for p-values. If present, features with
p-values lower than threshold_pvalue are considered differentially abundant.
Set threshold_pvalue = 1 to not filter by p-values.

threshold_logfc

A single or a numeric vector of thresholds for log fold changes. If present,
features with log fold change absolute values higher than threshold_logfc are

14 createPositives

considered differentially abundant. Set threshold_logfc = 0 to not filter by
log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". You can specify just the initial letter. Only used in the 2× 2 case.

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

TP A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is expected in that direction, in
the second position.

FP A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is not expected in that direc-
tion, in the second position.

Value

a data.frame object which contains the number of TPs and FPs features for each method and for
each threshold of the top argument.

See Also

getPositives, plotPositives.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,

object = ps_plaque_16S)
Initialize some limma based methods

createSplits 15

my_limma <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,
norm = c("TMM", "CSSmedian"))

Perform DA analysis
Plaque_16S_DA <- runDA(method_list = my_limma, object = ps_plaque_16S)

Count TPs and FPs, from the top 1 to the top 20 features.
As direction is supplied, features are ordered by "logFC" absolute values.
positives <- createPositives(object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "newNames",
slot = "pValMat", colName = "rawP", type = "pvalue", direction = "logFC",
threshold_pvalue = 1, threshold_logfc = 0, top = 1:20,
alternative = "greater", verbose = FALSE,
TP = list(c("DOWN Abundant", "Anaerobic"), c("UP Abundant", "Aerobic")),
FP = list(c("DOWN Abundant", "Aerobic"), c("UP Abundant", "Anaerobic")))

Plot the TP-FP differences for each threshold
plotPositives(positives = positives)

createSplits createSplits

Description

Given the phyloseq object from which the random splits should be created, this function produces a
list of 2 data.frame objects: Subset1 and Subset2 with as many rows as the number of splits and
as many columns as the half of the number of samples.

Usage

createSplits(object, varName = NULL, paired = NULL, balanced = TRUE, N = 1000)

Arguments

object a phyloseq object.

varName name of a factor variable with 2 levels.

paired name of the unique subject identifier variable. If specified, paired samples will
remain in the same split. (default = NULL).

balanced If TRUE a balanced design will be created for the splits. (Ignored if paired is
supplied).

N number of splits to generate.

Value

A list of 2 data.frame objects: Subset1 and Subset2 containing N rows and half of the total
number of samples columns. Each cell contains a unique sample identifier.

16 createTIEC

Examples

data(ps_plaque_16S)
set.seed(123)

Balanced design for repeated measures
splits_df <- createSplits(

object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE", paired = "RSID", balanced = TRUE, N = 100

)

Balanced design for independent samples
splits_df <- createSplits(

object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE", balanced = TRUE, N = 100

)

Unbalanced design
splits_df <- createSplits(

object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE", balanced = FALSE, N = 100

)

createTIEC createTIEC

Description

Extract the list of p-values from the outputs of the differential abundance detection methods to
compute several statistics to study the ability to control the type I error.

Usage

createTIEC(object)

Arguments

object Output of the differential abundance tests on mock comparisons. Must follow
a specific structure with comparison, method, matrix of p-values, and method’s
name (See vignette for detailed information).

Value

A list of data.frames:

• df_pval3 columns per number_of_features x methods x comparisons rows data.frame. The
three columns are called Comparison, pval, and method;

• df_FPR5 columns per methods x comparisons rows data.frame. For each set of method and
comparison, the proportion of false discoveries, considering 3 threshold (0.01, 0.05, 0.1) are
reported;

DA_ALDEx2 17

• df_QQcontains the coordinates to draw the QQ-plot to compare the mean observed p-value
distribution across comparisons, with the theoretical uniform distribution;

• df_KS5 columns and methods x comparisons rows data.frame. For each set of method and
comparison, the Kolmogorov-Smirnov test statistics and p-values are reported in KS and
KS_pval columns respectively.

See Also

createMocks

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,

object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,

norm = c("TMM", "CSSmedian"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,

object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

DA_ALDEx2 DA_ALDEx2

Description

Fast run for the ALDEx2’s differential abundance detection method.

18 DA_ALDEx2

Usage

DA_ALDEx2(
object,
pseudo_count = FALSE,
conditions = NULL,
mc.samples = 128,
test = c("t", "wilcox"),
denom = "iqlr",
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

verbose = TRUE
)

Arguments

object phyloseq object.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

conditions A character vector. A description of the data structure used for testing. Typically,
a vector of group labels. For aldex.glm, use a model.matrix.

mc.samples An integer. The number of Monte Carlo samples to use when estimating the un-
derlying distributions. Since we are estimating central tendencies, 128 is usually
sufficient.

test A character string. Indicates which tests to perform. "t" runs Welch’s t and
Wilcoxon tests. "kw" runs Kruskal-Wallace and glm tests. "glm" runs a gener-
alized linear model using a model.matrix. "corr" runs a correlation test using
cor.test.

denom A character string. Indicates which features to retain as the denominator for
the Geometric Mean calculation. Using "iqlr" accounts for data with systematic
variation and centers the features on the set features that have variance that is be-
tween the lower and upper quartile of variance. Using "zero" is a more extreme
case where there are many non-zero features in one condition but many zeros in
another. In this case the geometric mean of each group is calculated using the
set of per-group non-zero features.

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

DA_corncob 19

See Also

aldex for the Dirichlet-Multinomial model estimation. Several and more complex tests are present
in the ALDEx2 framework.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 300, size = 3, prob = 0.5), nrow = 50, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))
No use of scaling factors
ps_NF <- norm_edgeR(object = ps, method = "none")
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.none"]
head(scaleFacts)
Differential abundance
DA_ALDEx2(ps_NF, conditions = "group", test = "t", denom = "iqlr",

norm = "none")

DA_corncob DA_corncob

Description

Fast run for corncob differential abundance detection method.

Usage

DA_corncob(
object,
pseudo_count = FALSE,
formula,
phi.formula,
formula_null,
phi.formula_null,
test,
boot = FALSE,
coefficient = NULL,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

verbose = TRUE
)

20 DA_corncob

Arguments

object phyloseq object.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

formula an object of class formula without the response: a symbolic description of the
model to be fitted to the abundance.

phi.formula an object of class formula without the response: a symbolic description of the
model to be fitted to the dispersion.

formula_null Formula for mean under null, without response
phi.formula_null

Formula for overdispersion under null, without response

test Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (like-
lihood ratio test).

boot Boolean. Defaults to FALSE. Indicator of whether or not to use parametric boot-
strap algorithm. (See pbWald and pbLRT).

coefficient The coefficient of interest as a single word formed by the variable name and
the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

bbdml and differentialTest for differential abundance and differential variance evaluation.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))
No use of scaling factors
ps_NF <- norm_edgeR(object = ps, method = "none")
The phyloseq object now contains the scaling factors:

DA_DESeq2 21

scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.none"]
head(scaleFacts)
Differential abundance
DA_corncob(object = ps_NF, formula = ~ group, phi.formula = ~ group,

formula_null = ~ 1, phi.formula_null = ~ group, coefficient = "groupB",
norm = "none", test = "Wald")

DA_DESeq2 DA_DESeq2

Description

Fast run for DESeq2 differential abundance detection method.

Usage

DA_DESeq2(
object,
pseudo_count = FALSE,
design = NULL,
contrast = NULL,
alpha = 0.05,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

weights,
verbose = TRUE

)

Arguments

object phyloseq object.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design (Required). A formula which specifies the design of the experiment, taking
the form formula(~ x + y + z). That is, a formula with right-hand side only.
By default, the functions in this package and DESeq2 will use the last variable
in the formula (e.g. z) for presenting results (fold changes, etc.) and plotting.
When considering your specification of experimental design, you will want to
re-order the levels so that the NULL set is first. For example, the following line
of code would ensure that Enterotype 1 is used as the reference sample class in
tests by setting it to the first of the factor levels using the relevel function:
sample_data(entill)$Enterotype <-relevel(sample_data(entill)$Enterotype,"1")

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

alpha the significance cutoff used for optimizing the independent filtering (by default
0.05). If the adjusted p-value cutoff (FDR) will be a value other than 0.05, alpha
should be set to that value.

22 DA_edgeR

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the dispersion estimates ‘dispEsts‘, the
matrix of summary statistics for each tag ‘statInfo‘, and a suggested ‘name‘ of the final object
considering the parameters passed to the function.

See Also

phyloseq_to_deseq2 for phyloseq to DESeq2 object conversion, DESeq and results for the dif-
ferential abundance method.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))
Calculate the poscounts normalization factors
ps_NF <- norm_DESeq2(object = ps, method = "poscounts")
The phyloseq object now contains the normalization factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.poscounts"]
head(scaleFacts)
Differential abundance
DA_DESeq2(object = ps_NF, pseudo_count = FALSE, design = ~ group, contrast =

c("group", "B", "A"), norm = "poscounts")

DA_edgeR DA_edgeR

Description

Fast run for edgeR differential abundance detection method.

DA_edgeR 23

Usage

DA_edgeR(
object,
pseudo_count = FALSE,
group_name = NULL,
design = NULL,
robust = FALSE,
coef = 2,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

weights,
verbose = TRUE

)

Arguments

object phyloseq object.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

group_name character giving the name of the column containing information about experi-
mental group/condition for each sample/library.

design character or formula to specify the model matrix.

robust logical, should the estimation of prior.df be robustified against outliers?

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

norm name of the normalization method used to compute the scaling factors to use
in the differential abundance analysis. If norm is equal to "ratio", "poscounts",
or "iterate" the normalization factors are automatically transformed into scaling
factors.

weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values pValMat, the dispersion estimates dispEsts, the
matrix of summary statistics for each tag statInfo, and a suggested name of the final object con-
sidering the parameters passed to the function.

See Also

DGEList for the edgeR DEG object creation, estimateDisp and estimateGLMRobustDisp for
dispersion estimation, and glmQLFit and glmQLFTest for the quasi-likelihood negative binomial
model fit.

24 DA_limma

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))

Calculate the TMM scaling factors
ps_NF <- norm_edgeR(object = ps, method = "TMM")
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(scaleFacts)

Differential abundance
DA_edgeR(object = ps_NF, pseudo_count = FALSE, group_name = "group",

design = ~ group, coef = 2, robust = FALSE, norm = "TMM")

DA_limma DA_limma

Description

Fast run for limma voom differential abundance detection method.

Usage

DA_limma(
object,
pseudo_count = FALSE,
design = NULL,
coef = 2,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

weights,
verbose = TRUE

)

Arguments

object phyloseq object.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design character name of the metadata columns, formula, or design matrix with rows
corresponding to samples and columns to coefficients to be estimated.

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

DA_MAST 25

norm name of the normalization method used to compute the scaling factors to use
in the differential abundance analysis. If norm is equal to "ratio", "poscounts",
or "iterate" the normalization factors are automatically transformed into scaling
factors.

weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

voom for the mean-variance relationship estimation, lmFit for the linear model framework.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))
Calculate the TMM scaling factors
ps_NF <- norm_edgeR(object = ps, method = "TMM")
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(scaleFacts)
Differential abundance
DA_limma(object = ps_NF, pseudo_count = FALSE, design = ~ group, coef = 2,

norm = "TMM")

DA_MAST DA_MAST

Description

Fast run for MAST differential abundance detection method.

26 DA_MAST

Usage

DA_MAST(
object,
pseudo_count = FALSE,
rescale = c("median", "default"),
design,
coefficient = NULL,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

verbose = TRUE
)

Arguments

object phyloseq object.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

rescale Rescale count data, per million if ’default’, or per median library size if ’median’
(’median’ is suggested for metagenomics data).

design The model for the count distribution. Can be the variable name, or a character
similar to "~ 1 + group", or a formula, or a ‘model.matrix‘ object.

coefficient The coefficient of interest as a single word formed by the variable name and
the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

zlm for the Truncated Gaussian Hurdle model estimation.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))

DA_metagenomeSeq 27

ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),
phyloseq::sample_data(metadata))

No use of scaling factors
ps_NF <- norm_edgeR(object = ps, method = "none")
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.none"]
head(scaleFacts)
Differential abundance
DA_MAST(object = ps_NF, pseudo_count = FALSE, rescale = "median",

design = ~ group, norm = "none", coefficient = "groupB")

DA_metagenomeSeq DA_metagenomeSeq

Description

Fast run for the metagenomeSeq’s differential abundance detection method.

Usage

DA_metagenomeSeq(
object,
pseudo_count = FALSE,
design = NULL,
coef = 2,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

verbose = TRUE
)

Arguments

object phyloseq object.

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design The model for the count distribution. Can be the variable name, or a character
similar to "~ 1 + group", or a formula, or a ‘model.matrix‘ object.

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

norm name of the normalization method used to compute the scaling factors to use
in the differential abundance analysis. If norm is equal to "ratio", "poscounts",
or "iterate" the normalization factors are automatically transformed into scaling
factors.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

28 DA_Seurat

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

fitZig for the Zero-Inflated Gaussian regression model estimation and MRfulltable for results
extraction.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))
Calculate the CSSdefault scaling factors
ps_NF <- norm_CSS(object = ps, method = "default")
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.CSSdefault"]
head(scaleFacts)
Differential abundance
DA_metagenomeSeq(object = ps_NF, pseudo_count = FALSE, design = ~ group,

coef = 2, norm = "CSSdefault")

DA_Seurat DA_Seurat

Description

Fast run for Seurat differential abundance detection method.

Usage

DA_Seurat(
object,
pseudo_count = FALSE,
test.use = "wilcox",
contrast,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none",
"ratio", "poscounts", "iterate", "TSS", "CSSmedian", "CSSdefault"),

verbose = TRUE
)

DA_Seurat 29

Arguments

object phyloseq object.
pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
test.use Denotes which test to use. Available options are:

• "wilcox" : Identifies differentially expressed genes between two groups of
cells using a Wilcoxon Rank Sum test (default)

• "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid
et al., Bioinformatics, 2013)

• "roc" : Identifies ’markers’ of gene expression using ROC analysis. For
each gene, evaluates (using AUC) a classifier built on that gene alone, to
classify between two groups of cells. An AUC value of 1 means that ex-
pression values for this gene alone can perfectly classify the two groupings
(i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells
in cells.2). An AUC value of 0 also means there is perfect classification, but
in the other direction. A value of 0.5 implies that the gene has no predictive
power to classify the two groups. Returns a ’predictive power’ (abs(AUC-
0.5) * 2) ranked matrix of putative differentially expressed genes.

• "t" : Identify differentially expressed genes between two groups of cells
using the Student’s t-test.

• "negbinom" : Identifies differentially expressed genes between two groups
of cells using a negative binomial generalized linear model. Use only for
UMI-based datasets

• "poisson" : Identifies differentially expressed genes between two groups of
cells using a poisson generalized linear model. Use only for UMI-based
datasets

• "LR" : Uses a logistic regression framework to determine differentially
expressed genes. Constructs a logistic regression model predicting group
membership based on each feature individually and compares this to a null
model with a likelihood ratio test.

• "MAST" : Identifies differentially expressed genes between two groups of
cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST
package to run the DE testing.

• "DESeq2" : Identifies differentially expressed genes between two groups of
cells based on a model using DESeq2 which uses a negative binomial distri-
bution (Love et al, Genome Biology, 2014).This test does not support pre-
filtering of genes based on average difference (or percent detection rate) be-
tween cell groups. However, genes may be pre-filtered based on their min-
imum detection rate (min.pct) across both cell groups. To use this method,
please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

30 enrichmentTest

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A list object containing the matrix of p-values ‘pValMat‘, the matrix of summary statistics for each
tag ‘statInfo‘, and a suggested ‘name‘ of the final object considering the parameters passed to the
function.

See Also

CreateSeuratObject to create the Seurat object, AddMetaData to add metadata information, NormalizeData
to compute the normalization for the counts, FindVariableFeatures to estimate the mean-variance
trend, ScaleData to scale and center features in the dataset, and FindMarkers to perform differen-
tial abundance analysis.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))
No use of scaling factors
ps_NF <- norm_edgeR(object = ps, method = "none")
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.none"]
head(scaleFacts)
Differential abundance
DA_Seurat(object = ps_NF, contrast = c("group","B","A"), norm = "none")

enrichmentTest enrichmentTest

Description

Perform the Fisher exact test for all the possible 2x2 contingency tables, considering differential
abundance direction and enrichment variable.

Usage

enrichmentTest(method, enrichmentCol, alternative = "greater")

enrichmentTest 31

Arguments

method Output of differential abundance detection method in which DA information is
extracted by the getDA function and the information related to enrichment is
appropriately added through the addKnowledge.

enrichmentCol name of the column containing information for enrichment analysis.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". You can specify just the initial letter. Only used in the 2× 2 case.

Value

a list of objects:

• data a data.frame object with DA directions, statistics, and feature names;

• tables a list of 2x2 contingency tables;

• tests the list of Fisher exact tests’ p-values for each contingency table;

• summaries a list with the first element of each contingency table and its p-value (for graphical
purposes);

See Also

extractDA, addKnowledge, and createEnrichment

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"])
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

DA Analysis
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

32 extractDA

)

DA <- getDA(method = da.limma, slot = "pValMat", colName = "adjP",
type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL)

Add a priori information
DA_info <- addKnowledge(method = DA, priorKnowledge = priorInfo,

enrichmentCol = "Type", namesCol = "newNames")
Create contingency tables and compute F tests
DA_info_enriched <- enrichmentTest(method = DA_info, enrichmentCol = "Type",

alternative = "greater")

extractDA extractDA

Description

Inspect the list of p-values or/and log fold changes from the output of differential abundance detec-
tion methods.

Usage

extractDA(
object,
slot = "pValMat",
colName = "adjP",
type = "pvalue",
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,
top = NULL,
verbose = FALSE

)

Arguments

object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

slot A character vector with 1 or number-of-methods-times repeats of the slot names
where to extract values for each method (default slot = "pValMat").

colName A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue" or "logfc" (default type = "pvalue").

extractDA 33

direction A character vector with 1 or number-of-methods-times repeats of the statInfo’s
column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

threshold_pvalue

A single or a numeric vector of thresholds for p-values. If present, features with
p-values lower than threshold_pvalue are considered differentially abundant.
Set threshold_pvalue = 1 to not filter by p-values.

threshold_logfc

A single or a numeric vector of thresholds for log fold changes. If present,
features with log fold change absolute values higher than threshold_logfc are
considered differentially abundant. Set threshold_logfc = 0 to not filter by
log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

Value

A data.frame with several columns for each method:

• stat which contains the p-values or the absolute log fold change values;

• direction which is present if direction was supplied, it contains the information about
directionality of differential abundance (usually log fold changes);

• DA which can contain several values according to thresholds and inputs. "DA" or "non-DA" if
direction = NULL, "UP Abundant", "DOWN Abundant", or "non-DA" otherwise.

See Also

getDA, extractStatistics

Examples

data("ps_plaque_16S")
Add scaling factors
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,

object = ps_plaque_16S)
Perform DA analysis
my_methods <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,

norm = c("TMM", "CSSmedian"))
Plaque_16S_DA <- runDA(method_list = my_methods, object = ps_plaque_16S)
Top 10 features (ordered by 'direction') are DA
DA_1 <- extractDA(

object = Plaque_16S_DA, slot = "pValMat", colName = "adjP",
type = "pvalue", direction = "logFC", threshold_pvalue = 1,
threshold_logfc = 0, top = 10

)
Features with p-value < 0.05 and |logFC| > 1 are DA

34 extractStatistics

DA_2 <- extractDA(
object = Plaque_16S_DA, slot = "pValMat", colName = "adjP",
type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL

)

extractStatistics extractStatistics

Description

Extract the list of p-values or/and log fold changes from the outputs of the differential abundance
detection methods.

Usage

extractStatistics(
object,
slot = "pValMat",
colName = "rawP",
type = "pvalue",
direction = NULL,
verbose = FALSE

)

Arguments

object Output of differential abundance detection methods. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

slot A character vector with 1 or number-of-methods-times repeats of the slot names
where to extract values for each method (default slot = "pValMat").

colName A character vector with 1 or number-of-methods-times repeats of the column
name of the slot where to extract values for each method (default colName =
"rawP").

type A character vector with 1 or number-of-methods-times repeats of the value type
of the column selected where to extract values for each method. Two values are
possible: "pvalue" or "logfc" (default type = "pvalue").

direction A character vector with 1 or number-of-methods-times repeats of the statInfo’s
column name containing information about the signs of differential abundance
(usually log fold changes) for each method (default direction = NULL).

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

Value

A vector or a data.frame for each method. If direction = NULL, the colname column val-
ues, transformed according to type (not tranformed if type = "pvalue", -abs(value) if type
= "logfc"), of the slot are reported , otherwise the direction column of the statInfo matrix is
added to the output.

extractStatistics 35

See Also

getStatistics

Examples

data("ps_plaque_16S")
Add scaling factors
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_plaque_16S <- runNormalizations(normalization_list = my_norm,

object = ps_plaque_16S)
Perform DA analysis
my_methods <- set_limma(design = ~ 1 + HMP_BODY_SUBSITE, coef = 2,

norm = c("TMM", "CSSmedian"))
Plaque_16S_DA <- runDA(method_list = my_methods, object = ps_plaque_16S)
Extract statistics for concordance analysis:
Only p-values
extracted_pvalues <- extractStatistics(

object = Plaque_16S_DA, slot =
"pValMat", colName = "rawP", type = "pvalue"

)
Only transformed log fold changes -abs(logFC)
extracted_abslfc <- extractStatistics(

object = Plaque_16S_DA, slot =
"statInfo", colName = "logFC", type = "logfc"

)
Only transformed log fold changes for a method and p-values for the other
extracted_abslfc_pvalues <- extractStatistics(

object = Plaque_16S_DA,
slot = c("statInfo", "pValMat"), colName = c("logFC", "rawP"), type =

c("logfc", "pvalue")
)
Extract statistics for enrichment analysis:
p-values and log fold changes
extracted_pvalues_and_lfc <- extractStatistics(

object = Plaque_16S_DA,
slot = "pValMat", colName = "rawP", type = "pvalue", direction = "logFC"

)
transformed log fold changes and untouched log fold changes
extracted_abslfc_and_lfc <- extractStatistics(

object = Plaque_16S_DA,
slot = "statInfo", colName = "logFC", type = "logfc", direction =

"logFC"
)
Only transformed log fold changes for a method and p-values for the other
extracted_mix <- extractStatistics(

object = Plaque_16S_DA,
slot = c("statInfo", "pValMat"), colName = c("logFC", "rawP"), type =

c("logfc", "pvalue"), direction = "logFC"
)

36 fitHURDLE

fitDM fitDM

Description

Fit a Dirichlet-Multinomial (DM) distribution for each taxon of the count data. The model estima-
tion procedure is performed by MGLM MGLMreg function without assuming the presence of any
group in the samples (design matrix equal to a column of ones.)

Usage

fitDM(counts, verbose = TRUE)

Arguments

counts a phyloseq object or a matrix of counts with features (OTUs, ASVs, genes) by
row and samples by column.

verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y0 column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
DM <- fitDM(counts)
head(DM)

fitHURDLE fitHURDLE

Description

Fit a truncated gaussian hurdle model for each taxon of the count data. The hurdle model estimation
procedure is performed by MAST zlm function without assuming the presence of any group in the
samples (design matrix equal to a column of ones.)

Usage

fitHURDLE(counts, scale = "default", verbose = TRUE)

fitModels 37

Arguments

counts a phyloseq object or a matrix of counts with features (OTUs, ASVs, genes) by
row and samples by column.

scale Character vector, either median or default to choose between the median of
the library size or one million to scale raw counts.

verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y0 column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
HURDLE <- fitHURDLE(counts, scale = "median")
head(HURDLE)

fitModels fitModels

Description

A wrapper function that fits the specified models for each taxon of the count data and computes
the mean difference (MD) and zero probability difference (ZPD) between estimated and observed
values.

Usage

fitModels(
counts,
models = c("NB", "ZINB", "DM", "ZIG", "HURDLE"),
scale_ZIG = c("default", "median"),
scale_HURDLE = c("default", "median"),
verbose = TRUE

)

38 fitNB

Arguments

counts a phyloseq object or a matrix of counts with features (OTUs, ASVs, genes) by
row and samples by column.

models character vector which assumes the values NB, ZINB, DM, ZIG, and HURDLE.

scale_ZIG character vector, either median or default to choose between the median of the
library size or one thousand to scale normalization factors for the zero-inflated
gaussian model.

scale_HURDLE character vector, either median or default to choose between the median of the
library size or one million to scale raw counts for the truncated gaussian hurdle
model.

verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.

Value

list of data.frame objects for each model. The first two columns contain the properly transformed
observed values for mean and zero proportion, while the third and the fourth columns contain the
estimated values for the mean and the zero rate respectively.

See Also

fitNB, fitZINB, fitDM, fitZIG, and fitHURDLE for the model estimations, prepareObserved for
raw counts preparation, and meanDifferences for the Mean Difference (MD) and Zero Probability
Difference (ZPD) computations.

Examples

Generate some random counts
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
Estimate the counts assuming several distributions
GOF <- fitModels(

counts = counts, models = c(
"NB", "ZINB",
"DM", "ZIG", "HURDLE"

), scale_ZIG = c("median", "default"), scale_HURDLE =
c("median", "default")

)

head(GOF)

fitNB fitNB

fitZIG 39

Description

Fit a Negative Binomial (NB) distribution for each taxon of the count data. The NB estimation pro-
cedure is performed by edgeR glmFit function, using TMM normalized counts, tag-wise dispersion
estimation, and not assuming the presence of any group in the samples (design matrix equal to a
column of ones.)

Usage

fitNB(counts, verbose = TRUE)

Arguments

counts a phyloseq object or a matrix of counts with features (OTUs, ASVs, genes) by
row and samples by column.

verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the ‘counts‘ matrix in the ‘Y‘ column, and the estimated probability to observe a zero in the
‘Y0‘ column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the matrix of counts
NB <- fitNB(counts)
head(NB)

fitZIG fitZIG

Description

Fit a Zero-Inflated Gaussian (ZIG) distribution for each taxon of the count data. The model estima-
tion procedure is performed by metagenomeSeq fitZig function without assuming the presence of
any group in the samples (design matrix equal to a column of ones.)

Usage

fitZIG(counts, scale = "default", verbose = TRUE)

40 fitZINB

Arguments

counts a phyloseq object or a matrix of counts with features (OTUs, ASVs, genes) by
row and samples by column.

scale Character vector, either median or default to choose between the median of
the library size or one thousand to scale normalization factors.

verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y0 column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
ZIG <- fitZIG(counts, scale = "median")
head(ZIG)

fitZINB fitZINB

Description

Fit a Zero-Inflated Negative Binomial (ZINB) distribution for each taxon of the countdata. The
ZINB estimation procedure is performed by zinbwave zinbFit function with commondispersion
= FALSE, regularization parameter epsilon = 1e10, and not assuming the presence of any group in
the samples (design matrix equal to a column of ones.)

Usage

fitZINB(counts, verbose = TRUE)

Arguments

counts a phyloseq object or a matrix of counts with features (OTUs, ASVs, genes) by
row and samples by column.

verbose an optional logical value. If TRUE information on the steps of the algorithm is
printed. Default verbose = TRUE.

getDA 41

Value

A data frame containing the continuity corrected logarithms of the average fitted values for each
row of the matrix of counts in the Y column, and the estimated probability to observe a zero in the
Y0 column.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Fit model on the counts matrix
ZINB <- fitZINB(counts)
head(ZINB)

getDA getDA

Description

Inspect the list of p-values or/and log fold changes from the output of a differential abundance
detection method.

Usage

getDA(
method,
slot = "pValMat",
colName = "rawP",
type = "pvalue",
direction = NULL,
threshold_pvalue = 1,
threshold_logfc = 0,
top = NULL,
verbose = FALSE

)

Arguments

method Output of a differential abundance detection method. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

slot The slot name where to extract values (default slot = "pValMat").

colName The column name of the slot where to extract values (default colName = "rawP").

type The value type of the column selected where to extract values. Two values are
possible: "pvalue" or "logfc" (default type = "pvalue").

direction statInfo’s column name containing information about the signs of differential
abundance (usually log fold changes) (default direction = NULL).

42 getDA

threshold_pvalue

Threshold value for p-values. If present, features with p-values lower than
threshold_pvalue are considered differentially abundant. Set threshold_pvalue
= 1 to not filter by p-values.

threshold_logfc

Threshold value for log fold changes. If present, features with log fold change
absolute values higher than threshold_logfc are considered differentially abun-
dant. Set threshold_logfc = 0 to not filter by log fold change values.

top If not null, the top number of features, ordered by p-values or log fold change
values, are considered as differentially abundant (default top = NULL).

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

Value

A data.frame with several columns:

• stat which contains the p-values or the absolute log fold change values;

• direction which is present if method was a data.frame object, it contains the information
about directionality of differential abundance (usually log fold changes);

• DA which can contain several values according to thresholds and inputs. "DA" or "non-DA" if
method object was a vector, "UP Abundant", "DOWN Abundant", or "non-DA" if method was
a data.frame.

See Also

getStatistics, extractDA

Examples

data("ps_plaque_16S")
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

)
features with p-value < 0.1 as DA
getDA(

method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
direction = NULL, threshold_pvalue = 0.1, threshold_logfc = 0,
top = NULL

)
top 10 feature with highest logFC are DA
getDA(

method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
direction = "logFC", threshold_pvalue = 1, threshold_logfc = 0, top = 10

)

getPositives 43

features with p-value < 0.1 and |logFC| > 1 are DA
getDA(

method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
direction = "logFC", threshold_pvalue = 0.1, threshold_logfc = 1, top =

NULL
)
top 10 features with |logFC| > 1 are DA
getDA(

method = da.limma, slot = "pValMat", colName = "rawP", type = "pvalue",
direction = "logFC", threshold_pvalue = 1, threshold_logfc = 1, top = 10

)

getPositives getPositives

Description

Inspect the list of p-values or/and log fold changes from the output of a differential abundance
detection method and count the True Positives (TP) and the False Positives (FP).

Usage

getPositives(method, enrichmentCol, TP, FP)

Arguments

method Output of differential abundance detection method in which DA information is
extracted by the getDA function, information related to enrichment is appropri-
ately added through the addKnowledge function and the Fisher exact tests is
performed for the contingency tables by the enrichmentTests function.

enrichmentCol name of the column containing information for enrichment analysis.

TP A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is expected in that direction, in
the second position.

FP A list of length-2 vectors. The entries in the vector are the direction ("UP Abun-
dant", "DOWN Abundant", or "non-DA") in the first position, and the level of
the enrichment variable (enrichmentCol) which is not expected in that direc-
tion, in the second position.

Value

A named vector containing the number of TPs and FPs.

See Also

createPositives.

44 getPositives

Examples

data("ps_plaque_16S")
data("microbial_metabolism")
Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"]
)
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

DA Analysis
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

)

DA <- getDA(
method = da.limma, slot = "pValMat", colName = "adjP",
type = "pvalue", direction = "logFC", threshold_pvalue = 0.05,
threshold_logfc = 1, top = NULL

)
Add a priori information
DA_info <- addKnowledge(

method = DA, priorKnowledge = priorInfo,
enrichmentCol = "Type", namesCol = "newNames"

)
Create contingency tables and compute F tests
DA_info_enriched <- enrichmentTest(

method = DA_info, enrichmentCol = "Type",
alternative = "greater"

)
Count True and False Positives
DA_TP_FP <- getPositives(

method = DA_info_enriched, enrichmentCol = "Type",
TP = list(c("UP Abundant", "Aerobic"), c("DOWN Abundant", "Anaerobic")),
FP = list(c("UP Abundant", "Anaerobic"), c("DOWN Abundant", "Aerobic"))

)

getStatistics 45

getStatistics getStatistics

Description

Extract the list of p-values or/and log fold changes from the output of a differential abundance
detection method.

Usage

getStatistics(
method,
slot = "pValMat",
colName = "rawP",
type = "pvalue",
direction = NULL,
verbose = FALSE

)

Arguments

method Output of a differential abundance detection method. pValMat, statInfo matri-
ces, and method’s name must be present (See vignette for detailed information).

slot The slot name where to extract values (default slot = "pValMat").

colName The column name of the slot where to extract values (default colName = "rawP").

type The value type of the column selected where to extract values. Two values are
possible: "pvalue" or "logfc" (default type = "pvalue").

direction statInfo’s column name containing information about the signs of differential
abundance (usually log fold changes) (default direction = NULL).

verbose Boolean to display the kind of extracted values (default verbose = FALSE).

Value

A vector or a data.frame. If direction = NULL, the colname column values, transformed accord-
ing to type (not tranformed if type = "pvalue", -abs(value) if type = "logfc"), of the slot are
reported, otherwise the direction column of the statInfo matrix is added to the output.

See Also

extractStatistics

46 iterative_ordering

Examples

data("ps_plaque_16S")
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

)
get p-values
getStatistics(

method = da.limma, slot = "pValMat", colName = "rawP",
type = "pvalue", direction = NULL

)
get negative abs(logFC) values
getStatistics(

method = da.limma, slot = "statInfo", colName = "logFC",
type = "logfc", direction = NULL

)
get p-values and logFC
getStatistics(

method = da.limma, slot = "pValMat", colName = "rawP",
type = "pvalue", direction = "logFC"

)

iterative_ordering iterativeOrdering

Description

Turn the chosen columns (factor) of the input data.frame into ordered factors. For each factor, the
order is given by the number of elements in each level of that factor.

Usage

iterative_ordering(df, var_names, i = 1, decreasing = TRUE)

Arguments

df a data.frame object.

var_names character vector containing the names of one or more columns of df.

i iteration index (default i = 1).

decreasing logical value or a vector of them. Each value should be associated to a var_name
vector’s element. Should the sort order be increasing or decreasing?

meanDifferences 47

Value

the input data.frame with the var_names variables as ordered factors.

See Also

plotMutualFindings

Examples

From a dataset with some factor columns
mpg <- data.frame(ggplot2::mpg)
Order the levels of the desired factors based on the cardinality of each
level.
ordered_mpg <- iterative_ordering(df = mpg,

var_names = c("manufacturer", "model"),
decreasing = c(TRUE, TRUE))

Now the levels of the factors are ordered in a decreasing way
levels(ordered_mpg$manufacturer)
levels(ordered_mpg$model)

meanDifferences meanDifferences

Description

Compute the differences between the estimated and the observed continuity corrected logarithms
of the average count values (MD), and between the estimated average probability to observe a zero
and the the observed zero rate (ZPD).

Usage

meanDifferences(estimated, observed)

Arguments

estimated a two column data.frame, output of fitNB, fitZINB, fitDM, fitZIG, or fitHURDLE
functions. More in general, a data frame containing the continuity corrected log-
arithm for the average of the fitted values for each row of a matrix of counts in
the Y column, and the estimated probability to observe a zero in the Y0 column.

observed a two column data.frame, output of prepareObserved function. More in gen-
eral, a data frame containing the continuity corrected logarithm for the average
of the observed values for each row of a matrix of counts in the Y column, and
the estimated proportion of zeroes in the Y0 column.

Value

a data.frame containing the differences between the estimated and the observed continuity cor-
rected logarithms of the average count values in the MD column, and between the estimated average
probability to observe a zero and the the observed zero rate in the ZPD column.

48 norm_CSS

See Also

prepareObserved.

Examples

Randomly generate the observed and estimated data.frames
observed <- data.frame(Y = rpois(10, 5), Y0 = runif(10, 0, 1))
estimated <- data.frame(Y = rpois(10, 5), Y0 = runif(10, 0, 1))

Compute the mean differences between estimated and observed data.frames
meanDifferences(estimated, observed)

microbial_metabolism (Data) Microbial metabolism

Description

Aerobic, Anaerobic, or Facultative Anaerobic microbes by genus (NYC-HANES study).

Usage

data(microbial_metabolism)

Format

A data.frame object

norm_CSS norm_CSS

Description

Calculate scaling factors from a phyloseq object to scale the raw library sizes. Inherited from
metagenomeSeq ‘calcNormFactors‘ function which performs the Cumulative Sum Scaling normal-
ization.

Usage

norm_CSS(object, method = "default", verbose = TRUE)

Arguments

object phyloseq object containing the counts to be normalized.

method normalization scaling parameter (default method = "default"). If "median",
the median of the normalization factors is used as scaling (Paulson et al. 2013).

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

https://github.com/waldronlab/nychanesmicrobiome

norm_DESeq2 49

Value

A new column containing the CSS scaling factors is added to the phyloseq sample_data slot.

See Also

calcNormFactors for details. setNormalizations and runNormalizations to fastly set and run
normalizations.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))

Calculate the scaling factors
ps_NF <- norm_CSS(object = ps, method = "median")
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.CSSmedian"]
head(scaleFacts)

VERY IMPORTANT: to convert scaling factors to normalization factors
multiply them by the library sizes and renormalize.
normFacts = scaleFacts * phyloseq::sample_sums(ps_stool_16S)
Renormalize: multiply to 1
normFacts = normFacts/exp(colMeans(log(normFacts)))

norm_DESeq2 norm_DESeq2

Description

Calculate normalization factors from a phyloseq object to scale the raw library sizes. Inherited from
DESeq2 estimateSizeFactors function.

Usage

norm_DESeq2(
object,
method = c("ratio", "poscounts", "iterate"),
verbose = TRUE,
...

)

50 norm_DESeq2

Arguments

object phyloseq object containing the counts to be normalized.

method Method for estimation: either "ratio", "poscounts", or "iterate". "ratio"
uses the standard median ratio method introduced in DESeq. The size factor
is the median ratio of the sample over a "pseudosample": for each gene, the
geometric mean of all samples. "poscounts" and "iterate" offer alternative
estimators, which can be used even when all features contain a sample with a
zero (a problem for the default method, as the geometric mean becomes zero,
and the ratio undefined). The "poscounts" estimator deals with a feature with
some zeros, by calculating a modified geometric mean by taking the n-th root
of the product of the non-zero counts. This evolved out of use cases with Paul
McMurdie’s phyloseq package for metagenomic samples. The "iterate" esti-
mator iterates between estimating the dispersion with a design of ~1, and finding
a size factor vector by numerically optimizing the likelihood of the ~1 model.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

... other parameters for DESeq2 estimateSizeFactors function.

Value

A new column containing the chosen DESeq2-based normalization factors is added to the phyloseq
sample_data slot.

See Also

estimateSizeFactors for details. setNormalizations and runNormalizations to fastly set and
run normalizations.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))

Calculate the normalization factors
ps_NF <- norm_DESeq2(object = ps, method = "poscounts")
The phyloseq object now contains the normalization factors:
normFacts <- phyloseq::sample_data(ps_NF)[, "NF.poscounts"]
head(normFacts)

VERY IMPORTANT: to convert normalization factors to scaling factors divide
them by the library sizes and renormalize.
scaleFacts = normFacts / phyloseq::sample_sums(ps_stool_16S)
Renormalize: multiply to 1
scaleFacts = scaleFacts/exp(mean(log(scaleFacts)))

norm_edgeR 51

norm_edgeR norm_edgeR

Description

Calculate scaling factors from a phyloseq object to scale the raw library sizes. Inherited from edgeR
calcNormFactors function.

Usage

norm_edgeR(
object,
method = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
refColumn = NULL,
logratioTrim = 0.3,
sumTrim = 0.05,
doWeighting = TRUE,
Acutoff = -1e+10,
p = 0.75,
verbose = TRUE,
...

)

Arguments

object a phyloseq object containing the counts to be normalized.

method normalization method to be used. Choose between TMM, TMMwsp, RLE, upperquartile,
posupperquartile or none.

refColumn column to use as reference for method="TMM". Can be a column number or a
numeric vector of length nrow(object).

logratioTrim the fraction (0 to 0.5) of observations to be trimmed from each tail of the distri-
bution of log-ratios (M-values) before computing the mean. Used by method="TMM"
for each pair of samples.

sumTrim the fraction (0 to 0.5) of observations to be trimmed from each tail of the dis-
tribution of A-values before computing the mean. Used by method="TMM" for
each pair of samples.

doWeighting logical, whether to use (asymptotic binomial precision) weights when comput-
ing the mean M-values. Used by method="TMM" for each pair of samples.

Acutoff minimum cutoff applied to A-values. Count pairs with lower A-values are ig-
nored. Used by method="TMM" for each pair of samples.

p numeric value between 0 and 1 specifying which quantile of the counts should
be used by method="upperquartile".

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

... other arguments are not currently used.

52 norm_TSS

Value

A new column containing the chosen edgeR-based scaling factors is added to the phyloseq sample_data
slot. The effective library sizes to use in downstream analysis must be multiplied by the normaliza-
tion factors.

See Also

calcNormFactors for details.

setNormalizations and runNormalizations to fastly set and run normalizations.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))

Calculate the scaling factors
ps_NF <- norm_edgeR(object = ps, method = "TMM")

The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.TMM"]
head(scaleFacts)

VERY IMPORTANT: to convert scaling factors to normalization factors
multiply them by the library sizes and renormalize.
normFacts = scaleFacts * phyloseq::sample_sums(ps_stool_16S)
Renormalize: multiply to 1
normFacts = normFacts/exp(colMeans(log(normFacts)))

norm_TSS norm_TSS

Description

Calculate the raw library sizes from a phyloseq object. If used to divide counts, known as Total
Sum Scaling normalization (TSS).

Usage

norm_TSS(object, method = "TSS", verbose = TRUE)

plotConcordance 53

Arguments

object phyloseq object containing the counts to be normalized.

method normalization method to be used.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A new column containing the TSS scaling factors is added to the phyloseq sample_data slot.

See Also

setNormalizations and runNormalizations to fastly set and run normalizations.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))

Calculate the scaling factors
ps_NF <- norm_TSS(object = ps)
The phyloseq object now contains the scaling factors:
scaleFacts <- phyloseq::sample_data(ps_NF)[, "NF.TSS"]
head(scaleFacts)

VERY IMPORTANT: to convert scaling factors to normalization factors
multiply them by the library sizes and renormalize.
normFacts = scaleFacts * phyloseq::sample_sums(ps_stool_16S)
Renormalize: multiply to 1
normFacts = normFacts/exp(colMeans(log(normFacts)))

plotConcordance plotConcordance

Description

Produce a list of graphical outputs summarizing the between and within method concordance.

Usage

plotConcordance(concordance, threshold = NULL, cols = NULL)

54 plotConcordance

Arguments

concordance A long format data.frame produced by createConcordance function.

threshold The threshold for rank (x-axis upper limit if all methods have a higher number
of computed statistics).

cols A named vector containing the color hex codes.

Value

A 2 elements list of ggplot2 class objects:

• concordanceDendrogram which contains the vertically directioned dendrogram for the meth-
ods involved in the concordance analysis;

• concordanceHeatmap which contains the heatmap of between and within method concor-
dances.

See Also

createConcordance

Examples

data(ps_plaque_16S)
Balanced design for independent samples
my_splits <- createSplits(

object = ps_plaque_16S, varName = "HMP_BODY_SUBSITE", balanced = TRUE,
N = 10 # N = 100 suggested

)

Initialize some limma based methods
my_limma <- set_limma(design = ~ HMP_BODY_SUBSITE, coef = 2,

norm = c("TMM", "CSSmedian"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))

Run methods on split datasets
Plaque_16S_splitsDA <- runSplits(split_list = my_splits,

method_list = my_limma, normalization_list = my_norm,
object = ps_plaque_16S)

Concordance for p-values
concordance_pvalues <- createConcordance(

object = Plaque_16S_splitsDA, slot =
"pValMat", colName = "rawP", type = "pvalue"

)

plot concordances from rank 1 to 50.
plotConcordance(

concordance = concordance_pvalues,

plotContingency 55

threshold = 50
)

plotContingency plotContingency

Description

Plot of the contingency tables for the chosen method. The top-left cells are colored, according to
Fisher exact tests’ p-values, if the number of features in those cells are enriched.

Usage

plotContingency(enrichment, method, levels_to_plot)

Arguments

enrichment enrichment object produced by createEnrichment function.

method name of the method to plot.

levels_to_plot A character vector containing the levels of the enrichment variable to plot.

Value

a ggplot2 object.

See Also

createEnrichment, plotEnrichment, and plotMutualFindings.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"]
)
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

56 plotEnrichment

DA analysis
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
ps_plaque_16S <- norm_CSS(object = ps_plaque_16S, method = "median")

Perform DA analysis
Plaque_16S_DA <- list()
Plaque_16S_DA <- within(Plaque_16S_DA, {

DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

)
da.limma.css <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "CSSmedian"

)
})

enrichment <- createEnrichment(
object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS",
slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC",
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE

)
Contingency tables
plotContingency(enrichment = enrichment, method = "limma.TMM")
Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
Mutual findings
plotMutualFindings(

enrichment = enrichment, enrichmentCol = "Type",
n_methods = 1

)

plotEnrichment plotEnrichment

Description

Summary plot for the number of differentially abundant (DA) features and their association with
enrichment variable. If some features are UP-Abundant or DOWN-Abundant (or just DA), sev-
eral bars will be represented in the corresponding direction. Significance thresholds are reported
over/under each bar, according to the Fisher exact tests.

plotEnrichment 57

Usage

plotEnrichment(enrichment, enrichmentCol, levels_to_plot)

Arguments

enrichment enrichment object produced by createEnrichment function.

enrichmentCol name of the column containing information for enrichment analysis.

levels_to_plot A character vector containing the levels of the enrichment variable to plot.

Value

a ggplot2 object.

See Also

createEnrichment, plotContingency, and plotMutualFindings.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"]
)
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

DA analysis
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
ps_plaque_16S <- norm_CSS(object = ps_plaque_16S, method = "median")

Perform DA analysis
Plaque_16S_DA <- list()
Plaque_16S_DA <- within(Plaque_16S_DA, {

DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

58 plotFPR

)
da.limma.css <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "CSSmedian"

)
})

enrichment <- createEnrichment(
object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS",
slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC",
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE

)
Contingency tables
plotContingency(enrichment = enrichment, method = "limma.TMM")
Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
Mutual findings
plotMutualFindings(

enrichment = enrichment, enrichmentCol = "Type",
n_methods = 1

)

plotFPR plotFPR

Description

Draw the boxplots of the proportions of p-values lower than 0.01, 0.05, and 0.1 thresholds for each
method.

Usage

plotFPR(df_FPR, cols = NULL)

Arguments

df_FPR a data.frame produced by the createTIEC function, containing the FPR val-
ues.

cols named vector of colors.

Value

A ggplot object.

plotKS 59

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,

object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,

norm = c("TMM", "CSSmedian"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,

object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotKS plotKS

Description

Draw the boxplots of the Kolmogorov-Smirnov test statistics for the p-value distributions across the
mock comparisons.

Usage

plotKS(df_KS, cols = NULL)

Arguments

df_KS a data.frame produced by the createTIEC function containing the KS statistics
and their p-values.

cols named vector of colors.

60 plotMD

Value

A ggplot object.

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,

object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,

norm = c("TMM", "CSSmedian"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,

object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotMD plotMD

Description

A function to plot mean difference (MD) and zero probability difference (ZPD) values between
estimated and observed values.

Usage

plotMD(data, difference = NULL, split = TRUE)

plotMutualFindings 61

Arguments

data a list, output of the fitModels function or a ‘data.frame‘ object with Model,
Y, Y0, MD, and ZPD columns containing the model name, the observed values
for the mean and the zero proportion and the differences between observed and
estimated values.

difference character vector, either MD or ZPD to plot the differences between estimated and
observed mean counts or the differences between estimated zero probability and
observed zero proportion.

split Display each model mean differences in different facets (default split = TRUE).
If FALSE, points are not displayed for more clear representation.

Value

a ggplot object.

See Also

fitModels and RMSE for the model estimations and the RMSE computations respectively. plotRMSE
for the graphical evaluation of the RMSE values.

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Estimate the counts assuming several distributions
GOF <- fitModels(

counts = counts, models = c(
"NB", "ZINB",
"DM", "ZIG", "HURDLE"

), scale_ZIG = c("median", "default"), scale_HURDLE =
c("median", "default")

)

Plot the results
plotMD(data = GOF, difference = "MD", split = TRUE)
plotMD(data = GOF, difference = "ZPD", split = TRUE)

plotMutualFindings plotMutualFindings

Description

Plot and filter the features which are considered differentially abundant, simultaneously, by a spec-
ified number of methods.

62 plotMutualFindings

Usage

plotMutualFindings(enrichment, enrichmentCol, levels_to_plot, n_methods = 1)

Arguments

enrichment enrichment object produced by createEnrichment function.

enrichmentCol name of the column containing information for enrichment analysis.

levels_to_plot A character vector containing the levels of the enrichment variable to plot.

n_methods minimum number of method that mutually find the features.

Value

a ggplot2 object.

See Also

createEnrichment, plotEnrichment, and plotContingency.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"]
)
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

DA analysis
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
ps_plaque_16S <- norm_CSS(object = ps_plaque_16S, method = "median")

Perform DA analysis
Plaque_16S_DA <- list()
Plaque_16S_DA <- within(Plaque_16S_DA, {

DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,

plotPositives 63

coef = 2,
norm = "TMM"

)
da.limma.css <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "CSSmedian"

)
})

enrichment <- createEnrichment(
object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type", namesCol = "GENUS",
slot = "pValMat", colName = "adjP", type = "pvalue", direction = "logFC",
threshold_pvalue = 0.1, threshold_logfc = 1, top = 10, verbose = TRUE

)
Contingency tables
plotContingency(enrichment = enrichment, method = "limma.TMM")
Barplots
plotEnrichment(enrichment, enrichmentCol = "Type")
Mutual findings
plotMutualFindings(

enrichment = enrichment, enrichmentCol = "Type",
n_methods = 1

)

plotPositives plotPositives

Description

Plot the difference between the number of true positives (TP) and false positives (FP) for each
method and for each ’top’ threshold provided by the createPositives() function.

Usage

plotPositives(positives, cols = NULL)

Arguments

positives data.frame object produced by createPositives() function.

cols named vector of cols (default cols = NULL).

Value

a ggplot2 object.

64 plotPositives

See Also

getPositives, createPositives.

Examples

data("ps_plaque_16S")
data("microbial_metabolism")

Extract genera from the phyloseq tax_table slot
genera <- phyloseq::tax_table(ps_plaque_16S)[, "GENUS"]
Genera as rownames of microbial_metabolism data.frame
rownames(microbial_metabolism) <- microbial_metabolism$Genus
Match OTUs to their metabolism
priorInfo <- data.frame(genera,

"Type" = microbial_metabolism[genera, "Type"]
)
Unmatched genera becomes "Unknown"
unknown_metabolism <- is.na(priorInfo$Type)
priorInfo[unknown_metabolism, "Type"] <- "Unknown"
priorInfo$Type <- factor(priorInfo$Type)
Add a more informative names column
priorInfo[, "newNames"] <- paste0(rownames(priorInfo), priorInfo[, "GENUS"])

DA analysis
Add scaling factors
ps_plaque_16S <- norm_edgeR(object = ps_plaque_16S, method = "TMM")
ps_plaque_16S <- norm_CSS(object = ps_plaque_16S, method = "median")

Perform DA analysis
Plaque_16S_DA <- list()
Plaque_16S_DA <- within(Plaque_16S_DA, {

DA analysis
da.limma <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "TMM"

)
da.limma.css <- DA_limma(

object = ps_plaque_16S,
design = ~ 1 + HMP_BODY_SUBSITE,
coef = 2,
norm = "CSSmedian"

)
})

Count TPs and FPs, from the top 1 to the top 20 features.
As direction is supplied, features are ordered by "logFC" absolute values.
positives <- createPositives(

object = Plaque_16S_DA,
priorKnowledge = priorInfo, enrichmentCol = "Type",
namesCol = "newNames", slot = "pValMat", colName = "rawP",

plotQQ 65

type = "pvalue", direction = "logFC", threshold_pvalue = 1,
threshold_logfc = 0, top = 1:20, alternative = "greater",
verbose = FALSE,
TP = list(c("DOWN Abundant", "Anaerobic"), c("UP Abundant", "Aerobic")),
FP = list(c("DOWN Abundant", "Aerobic"), c("UP Abundant", "Anaerobic"))

)
Plot the TP-FP differences for each threshold
plotPositives(positives = positives)

plotQQ plotQQ

Description

Draw the average QQ-plots across the mock comparisons.

Usage

plotQQ(df_QQ, cols = NULL, zoom = c(0, 0.1))

Arguments

df_QQ Coordinates to draw the QQ-plot to compare the mean observed p-value distri-
bution across comparisons, with the theoretical uniform distribution.

cols named vector of colors.

zoom 2-dimesional vector containing the starting and the final coordinates (default:
c(0,0.1))

Value

A ggplot object.

Examples

Load some data
data(ps_stool_16S)

Generate the patterns for 10 mock comparison for an experiment
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,

object = ps_stool_16S)

Initialize some limma based methods

66 plotRMSE

my_limma <- set_limma(design = ~ group, coef = 2,
norm = c("TMM", "CSSmedian"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,

object = ps_stool_16S)

Prepare results for Type I Error Control
TIEC_summary <- createTIEC(results)

Plot the results
plotFPR(df_FPR = TIEC_summary$df_FPR)
plotQQ(df_QQ = TIEC_summary$df_QQ, zoom = c(0, 0.1))
plotKS(df_KS = TIEC_summary$df_KS)

plotRMSE plotRMSE

Description

A function to plot RMSE values computed for mean difference (MD) and zero probability difference
(ZPD) values between estimated and observed values.

Usage

plotRMSE(data, difference = NULL, plotIt = TRUE)

Arguments

data a list, output of the fitModels function or a ‘data.frame‘ object with Model,
Y, Y0, MD, and ZPD columns containing the model name, the observed values
for the mean and the zero proportion and the differences between observed and
estimated values.

difference character vector, either MD or ZPD to plot the differences between estimated and
observed mean counts or the differences between estimated zero probability and
observed zero proportion.

plotIt logical. Should plotting be done? (default plotIt = TRUE)

Value

a ggplot object.

See Also

fitModels and RMSE for the model estimations and the RMSE computations respectively. plotMD
for the graphical evaluation.

prepareObserved 67

Examples

Generate some random counts
counts = matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

Estimate the counts assuming several distributions
GOF <- fitModels(

counts = counts, models = c(
"NB", "ZINB",
"DM", "ZIG", "HURDLE"

), scale_ZIG = c("median", "default"), scale_HURDLE =
c("median", "default")

)

Plot the RMSE results
plotRMSE(data = GOF, difference = "MD")
plotRMSE(data = GOF, difference = "ZPD")

prepareObserved prepareObserved

Description

Continuity corrected logarithms of the average counts and fraction of zeroes by feature.

Usage

prepareObserved(counts, scale = NULL)

Arguments

counts a phyloseq object or a matrix of counts with features (OTUs, ASVs, genes) by
row and samples by column.

scale If specified it refers to the character vector used in fitHURDLE function. Either
median or default to choose between the median library size or one million as
scaling factors for raw counts.

Value

A data frame containing the continuity corrected logarithm for the raw count mean values for each
taxon of the matrix of counts in the Y column and the observed zero rate in the Y0 column. If scale
is specified the continuity corrected logarithm for the mean CPM (scale = "default") or the mean
counts per median library size (scale = "median") is computed instead.

See Also

meanDifferences

68 ps_stool_16S

Examples

Generate some random counts
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)

observed1 <- prepareObserved(counts)
For the comparison with HURDLE model
observed2 <- prepareObserved(counts, scale = "median")

ps_plaque_16S (Data) 60 Gingival Plaque samples of 16S rRNA (HMP 2012)

Description

A demonstrative purpose dataset containing microbial abundances for a total of 88 OTUs. The 60
Gingival Plaque paired samples belong to the Human Microbiome Project. This particular subset
contains 30 Supragingival and 30 Subgingival Plaque samples from the SEX = "Male", RUN_CENTER
= "WUCG", and VISITNO = "1" samples. It is possible to obtain the same dataset after basic filters
(remove taxa with zero counts) and collapsing the counts to the genus level; HMP16SData Biocon-
ductor package was used to download the data.

Usage

data(ps_plaque_16S)

Format

An object of class phyloseq

ps_stool_16S (Data) 33 Stool samples of 16S rRNA (HMP 2012)

Description

A demonstrative purpose dataset containing microbial abundances for a total of 71 OTUs. The
32 Stool samples belong to the Human Microbiome Project. This particular subset contains the
SEX = "Male", RUN_CENTER = "BI", and VISITNO = "1" samples. It is possible to obtain the same
dataset after basic filters (remove taxa with zero counts) and collapsing the counts to the genus
level; HMP16Data Bioconductor package was used to download the data.

Usage

data(ps_stool_16S)

Format

An object of class phyloseq

RMSE 69

RMSE RMSE

Description

Computes the Root Mean Square Error (RMSE) from a vector of differences.

Usage

RMSE(differences)

Arguments

differences a vector of differences.

Value

RMSE value

See Also

prepareObserved and meanDifferences.

Examples

Generate the data.frame of Mean Differences and Zero Probability Difference
MD_df <- data.frame(MD = rpois(10, 5), ZPD = runif(10, -1, 1))

Calculate RMSE for MD and ZPD values
RMSE(MD_df[, "MD"])
RMSE(MD_df[, "ZPD"])

runDA runDA

Description

Run the differential abundance detection methods.

Usage

runDA(method_list, object, weights = NULL, verbose = TRUE)

70 runMocks

Arguments

method_list a list object containing the methods and their parameters.

object a phyloseq object.

weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A named list containing the results for each method.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))

Set some simple normalizations
my_norm <- setNormalizations()

Add them to the phyloseq object
ps <- runNormalizations(normalization_list = my_norm, object = ps)

Set some limma instances
my_methods <- set_limma(design = ~ group, coef = 2,

norm = c("TMM", "poscounts", "CSSmedian"))

Run the methods
results <- runDA(method_list = my_methods, object = ps)

runMocks runMocks

Description

Run the differential abundance detection methods on mock datasets.

Usage

runMocks(mocks, method_list, object, weights = NULL, verbose = TRUE)

runNormalizations 71

Arguments

mocks a data.frame containing N rows and nsamples columns (if even). Each cell
of the data frame contains the "grp1" or "grp2" characters which represent the
mock groups pattern. Produced by the createMocks function.

method_list a list object containing the methods and their parameters.

object a phyloseq object.

weights an optional numeric matrix giving observational weights.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A named list containing the results for each method.

Examples

Load some data
data(ps_stool_16S)

Generate the pattern for 10 mock comparisons
(N = 1000 is suggested)
mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
head(mocks)

Add some normalization/scaling factors to the phyloseq object
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))
ps_stool_16S <- runNormalizations(normalization_list = my_norm,

object = ps_stool_16S)

Initialize some limma based methods
my_limma <- set_limma(design = ~ group, coef = 2,

norm = c("TMM", "CSSmedian"))

Run methods on mock datasets
results <- runMocks(mocks = mocks, method_list = my_limma,

object = ps_stool_16S)

runNormalizations runNormalizations

Description

Add normalization/scaling factors to a phyloseq object

Usage

runNormalizations(normalization_list, object, verbose = TRUE)

72 runSplits

Arguments

normalization_list

a list object containing the normalization methods and their parameters.

object a phyloseq object.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A phyloseq object containing the normalization/scaling factors.

See Also

setNormalizations

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"),

"group" = as.factor(c("A", "A", "A", "B", "B", "B")))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))

Set some simple normalizations
my_normalizations <- setNormalizations()

Add them to the phyloseq object
ps <- runNormalizations(normalization_list = my_normalizations, object = ps)

runSplits runSplits

Description

Run the differential abundance detection methods on split datasets.

Usage

runSplits(split_list, method_list, normalization_list, object, verbose = TRUE)

setNormalizations 73

Arguments

split_list A list of 2 data.frame objects: Subset1 and Subset2 produced by the createSplits
function.

method_list a list object containing the methods and their parameters.

normalization_list

a list object containing the normalization method names and their parameters
produced by setNormalizations.

object a phyloseq object.

verbose an optional logical value. If TRUE, information about the steps of the algorithm
is printed. Default verbose = TRUE.

Value

A named list containing the results for each method.

Examples

data(ps_plaque_16S)

Balanced design for independent samples
my_splits <- createSplits(

object = ps_plaque_16S, varName =
"HMP_BODY_SUBSITE", balanced = TRUE, N = 10 # N = 100 suggested

)

Initialize some limma based methods
my_limma <- set_limma(design = ~ HMP_BODY_SUBSITE, coef = 2,

norm = c("TMM", "CSSmedian"))

Set the normalization methods according to the DA methods
my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),

method = c("TMM", "median"))

Run methods on split datasets
results <- runSplits(split_list = my_splits, method_list = my_limma,

normalization_list = my_norm, object = ps_plaque_16S)

setNormalizations setNormalizations

Description

Set the methods and parameters to compute normalization/scaling factors.

74 set_ALDEx2

Usage

setNormalizations(
fun = c("norm_edgeR", "norm_DESeq2", "norm_CSS", "norm_edgeR"),
method = c("TMM", "poscounts", "median", "none")

)

Arguments

fun a character with the name of normalization function (e.g. "norm_edgeR", "norm_DESeq2",
"norm_CSS"...).

method a character with the normalization method (e.g. "TMM", "upperquartile"... if
the fun is "norm_edgeR").

Value

a list object containing the normalization methods and their parameters.

See Also

runNormalizations, norm_edgeR, norm_DESeq2, norm_CSS, norm_TSS

Examples

Set a TMM normalization
my_TMM_normalization <- setNormalizations(fun = "norm_edgeR", method = "TMM")

Set some simple normalizations
my_normalizations <- setNormalizations()

Add a custom normalization
my_normalizations <- c(my_normalizations,

myNormMethod1 = list("myNormMethod", "parameter1", "parameter2"))

set_ALDEx2 set_ALDEx2

Description

Set the parameters for ALDEx2 differential abundance detection method.

Usage

set_ALDEx2(
pseudo_count = FALSE,
conditions = NULL,
mc.samples = 128,
test = "t",
denom = "iqlr",

set_ALDEx2 75

norm = "TSS",
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

conditions A character vector. A description of the data structure used for testing. Typically,
a vector of group labels. For aldex.glm, use a model.matrix.

mc.samples An integer. The number of Monte Carlo samples to use when estimating the un-
derlying distributions. Since we are estimating central tendencies, 128 is usually
sufficient.

test A character string. Indicates which tests to perform. "t" runs Welch’s t and
Wilcoxon tests. "kw" runs Kruskal-Wallace and glm tests. "glm" runs a gener-
alized linear model using a model.matrix. "corr" runs a correlation test using
cor.test.

denom A character string. Indicates which features to retain as the denominator for
the Geometric Mean calculation. Using "iqlr" accounts for data with systematic
variation and centers the features on the set features that have variance that is be-
tween the lower and upper quartile of variance. Using "zero" is a more extreme
case where there are many non-zero features in one condition but many zeros in
another. In this case the geometric mean of each group is calculated using the
set of per-group non-zero features.

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

Value

A named list containing the set of parameters for DA_ALDEx2 method.

See Also

DA_ALDEx2

Examples

Set some basic combinations of parameters for ALDEx2
base_ALDEx2 <- set_ALDEx2(conditions = "group")
Set a specific set of normalization for ALDEx2 (even of other
packages!)
setNorm_ALDEx2 <- set_ALDEx2(conditions = "group", norm = c("TSS", "TMM"))
Set many possible combinations of parameters for ALDEx2
all_ALDEx2 <- set_ALDEx2(conditions = "group", denom = c("iqlr", "zero"),

test = c("t", "wilcox"))

76 set_corncob

set_corncob set_corncob

Description

Set the parameters for corncob differential abundance detection method.

Usage

set_corncob(
pseudo_count = FALSE,
formula = NULL,
phi.formula = NULL,
formula_null = NULL,
phi.formula_null = NULL,
test = c("Wald", "LRT"),
boot = FALSE,
coefficient = NULL,
norm = "TSS",
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

formula an object of class formula without the response: a symbolic description of the
model to be fitted to the abundance.

phi.formula an object of class formula without the response: a symbolic description of the
model to be fitted to the dispersion.

formula_null Formula for mean under null, without response
phi.formula_null

Formula for overdispersion under null, without response

test Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (like-
lihood ratio test).

boot Boolean. Defaults to FALSE. Indicator of whether or not to use parametric boot-
strap algorithm. (See pbWald and pbLRT).

coefficient The coefficient of interest as a single word formed by the variable name and
the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

set_DESeq2 77

Value

A named list containing the set of parameters for DA_corncob method.

See Also

DA_corncob

Examples

Set some basic combinations of parameters for corncob
base_corncob <- set_corncob(formula = ~ group, phi.formula = ~ group,

formula_null = ~ 1, phi.formula_null = ~ group, coefficient = "groupB")
Set a specific set of normalization for corncob (even of other packages!)
setNorm_corncob <- set_corncob(formula = ~ group, phi.formula = ~ group,

formula_null = ~ 1, phi.formula_null = ~ group, coefficient = "groupB",
norm = c("TMM", "TSS", "poscounts"))

Set many possible combinations of parameters for corncob
all_corncob <- set_corncob(pseudo_count = c(TRUE, FALSE), formula = ~ group,

phi.formula = ~ group, formula_null = ~ 1, phi.formula_null = ~ group,
coefficient = "groupB", boot = c(TRUE, FALSE))

set_DESeq2 set_DESeq2

Description

Set the parameters for DESeq2 differential abundance detection method.

Usage

set_DESeq2(
pseudo_count = FALSE,
design = NULL,
contrast = NULL,
alpha = 0.05,
norm = c("ratio", "poscounts", "iterate"),
weights_logical = FALSE,
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

design (Required). A formula which specifies the design of the experiment, taking
the form formula(~ x + y + z). That is, a formula with right-hand side only.
By default, the functions in this package and DESeq2 will use the last variable
in the formula (e.g. z) for presenting results (fold changes, etc.) and plotting.
When considering your specification of experimental design, you will want to

78 set_edgeR

re-order the levels so that the NULL set is first. For example, the following line
of code would ensure that Enterotype 1 is used as the reference sample class in
tests by setting it to the first of the factor levels using the relevel function:
sample_data(entill)$Enterotype <-relevel(sample_data(entill)$Enterotype,"1")

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

alpha the significance cutoff used for optimizing the independent filtering (by default
0.05). If the adjusted p-value cutoff (FDR) will be a value other than 0.05, alpha
should be set to that value.

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

weights_logical

logical vector, if TRUE a matrix of observational weights will be used for dif-
ferential abundance analysis (default weights_logical = FALSE).

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Value

A named list containing the set of parameters for DA_DESeq2 method.

See Also

DA_DESeq2

Examples

Set some basic combinations of parameters for DESeq2
base_DESeq2 <- set_DESeq2(design = ~ group, contrast = c("group", "B", "A"))
Set a specific set of normalization for DESeq2 (even of other packages!)
setNorm_DESeq2 <- set_DESeq2(design = ~ group, contrast =

c("group", "B", "A"), norm = c("TMM", "poscounts"))
Set many possible combinations of parameters for edgeR
all_DESeq2 <- set_DESeq2(pseudo_count = c(TRUE, FALSE), design = ~ group,

contrast = c("group", "B", "A"), weights_logical = c(TRUE,FALSE))

set_edgeR set_edgeR

Description

Set the parameters for edgeR differential abundance detection method.

set_edgeR 79

Usage

set_edgeR(
pseudo_count = FALSE,
group_name = NULL,
design = NULL,
robust = FALSE,
coef = 2,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
weights_logical = FALSE,
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

group_name character giving the name of the column containing information about experi-
mental group/condition for each sample/library.

design character or formula to specify the model matrix.

robust logical, should the estimation of prior.df be robustified against outliers?

coef integer or character index vector indicating which coefficients of the linear model
are to be tested equal to zero.

norm name of the normalization method used to compute the scaling factors to use
in the differential abundance analysis. If norm is equal to "ratio", "poscounts",
or "iterate" the normalization factors are automatically transformed into scaling
factors.

weights_logical

logical vector, if true a matrix of observation weights must be supplied (default
weights_logical = FALSE).

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Value

A named list containing the set of parameters for DA_edgeR method.

See Also

DA_edgeR

Examples

Set some basic combinations of parameters for edgeR
base_edgeR <- set_edgeR(group_name = "group", design = ~ group, coef = 2)

Set a specific set of normalization for edgeR (even of other packages!)
setNorm_edgeR <- set_edgeR(group_name = "group", design = ~ group, coef = 2,

norm = c("TMM", "poscounts"))

80 set_limma

Set many possible combinations of parameters for edgeR
all_edgeR <- set_edgeR(pseudo_count = c(TRUE, FALSE), group_name = "group",

design = ~ group, robust = c(TRUE, FALSE), coef = 2,
weights_logical = c(TRUE,FALSE))

set_limma set_limma

Description

Set the parameters for limma differential abundance detection method.

Usage

set_limma(
pseudo_count = FALSE,
design = NULL,
coef = 2,
norm = c("TMM", "TMMwsp", "RLE", "upperquartile", "posupperquartile", "none"),
weights_logical = FALSE,
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
design character name of the metadata columns, formula, or design matrix with rows

corresponding to samples and columns to coefficients to be estimated.
coef integer or character index vector indicating which coefficients of the linear model

are to be tested equal to zero.
norm name of the normalization method used to compute the scaling factors to use

in the differential abundance analysis. If norm is equal to "ratio", "poscounts",
or "iterate" the normalization factors are automatically transformed into scaling
factors.

weights_logical

logical vector, if TRUE a matrix of observational weights will be used for dif-
ferential abundance analysis (default weights_logical = FALSE).

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE).

Value

A named list containing the set of parameters for DA_limma method.

See Also

DA_limma

set_MAST 81

Examples

Set some basic combinations of parameters for limma
base_limma <- set_limma(design = ~ group, coef = 2)
Set a specific set of normalization for limma (even of other packages!)
setNorm_limma <- set_limma(design = ~ group, coef = 2,

norm = c("TMM", "poscounts"))
Set many possible combinations of parameters for limma
all_limma <- set_limma(pseudo_count = c(TRUE, FALSE), design = ~ group,

coef = 2, weights_logical = c(TRUE,FALSE))

set_MAST set_MAST

Description

Set the parameters for MAST differential abundance detection method.

Usage

set_MAST(
pseudo_count = FALSE,
rescale = c("median", "default"),
design = NULL,
coefficient = NULL,
norm = "TSS",
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

rescale Rescale count data, per million if ’default’, or per median library size if ’median’
(’median’ is suggested for metagenomics data).

design The model for the count distribution. Can be the variable name, or a character
similar to "~ 1 + group", or a formula, or a ‘model.matrix‘ object.

coefficient The coefficient of interest as a single word formed by the variable name and
the non reference level. (e.g.: ’ConditionDisease’ if the reference level for the
variable ’Condition’ is ’control’).

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

82 set_metagenomeSeq

Value

A named list containing the set of parameters for DA_MAST method.

See Also

DA_MAST

Examples

Set some basic combinations of parameters for MAST
base_MAST <- set_MAST(design = ~ group, coefficient = "groupB")
Set a specific set of normalization for MAST (even of other packages!)
setNorm_MAST <- set_MAST(design = ~ group, coefficient = "groupB",

norm = c("TSS", "poscounts", "TMM"))
Set many possible combinations of parameters for MAST
all_MAST <- set_MAST(pseudo_count = c(TRUE, FALSE), rescale = c("median",

"default"), design = ~ group, coefficient = "groupB", norm = c("TSS",
"poscounts"))

set_metagenomeSeq set_metagenomeSeq

Description

Set the parameters for metagenomeSeq differential abundance detection method.

Usage

set_metagenomeSeq(
pseudo_count = FALSE,
design = NULL,
coef = 2,
norm = c("CSSmedian", "CSSdefault"),
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).
design The model for the count distribution. Can be the variable name, or a character

similar to "~ 1 + group", or a formula, or a ‘model.matrix‘ object.
coef integer or character index vector indicating which coefficients of the linear model

are to be tested equal to zero.
norm name of the normalization method used to compute the scaling factors to use

in the differential abundance analysis. If norm is equal to "ratio", "poscounts",
or "iterate" the normalization factors are automatically transformed into scaling
factors.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

set_Seurat 83

Value

A named list containing the set of parameters for DA_metagenomeSeq method.

See Also

DA_metagenomeSeq

Examples

Set some basic combinations of parameters for metagenomeSeq
base_mgs <- set_metagenomeSeq(design = ~ group, coef = 2)
Set a specific set of normalization for metagenomeSeq (even of other
packages!)
setNorm_mgs <- set_metagenomeSeq(design = ~ group, coef = 2,

norm = c("CSSmedian", "TMM"))
Set many possible combinations of parameters for metagenomeSeq
all_mgs <- set_metagenomeSeq(pseudo_count = c(TRUE, FALSE), design = ~ group,

coef = 2, norm = c("CSSmedian", "CSSdefault", "TMM", "TSS"))

set_Seurat set_Seurat

Description

Set the parameters for Seurat differential abundance detection method.

Usage

set_Seurat(
pseudo_count = FALSE,
test.use = c("wilcox", "t"),
contrast = NULL,
norm = "TSS",
expand = TRUE

)

Arguments

pseudo_count add 1 to all counts if TRUE (default pseudo_count = FALSE).

test.use Denotes which test to use. Available options are:

• "wilcox" : Identifies differentially expressed genes between two groups of
cells using a Wilcoxon Rank Sum test (default)

• "bimod" : Likelihood-ratio test for single cell gene expression, (McDavid
et al., Bioinformatics, 2013)

84 set_Seurat

• "roc" : Identifies ’markers’ of gene expression using ROC analysis. For
each gene, evaluates (using AUC) a classifier built on that gene alone, to
classify between two groups of cells. An AUC value of 1 means that ex-
pression values for this gene alone can perfectly classify the two groupings
(i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells
in cells.2). An AUC value of 0 also means there is perfect classification, but
in the other direction. A value of 0.5 implies that the gene has no predictive
power to classify the two groups. Returns a ’predictive power’ (abs(AUC-
0.5) * 2) ranked matrix of putative differentially expressed genes.

• "t" : Identify differentially expressed genes between two groups of cells
using the Student’s t-test.

• "negbinom" : Identifies differentially expressed genes between two groups
of cells using a negative binomial generalized linear model. Use only for
UMI-based datasets

• "poisson" : Identifies differentially expressed genes between two groups of
cells using a poisson generalized linear model. Use only for UMI-based
datasets

• "LR" : Uses a logistic regression framework to determine differentially
expressed genes. Constructs a logistic regression model predicting group
membership based on each feature individually and compares this to a null
model with a likelihood ratio test.

• "MAST" : Identifies differentially expressed genes between two groups of
cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST
package to run the DE testing.

• "DESeq2" : Identifies differentially expressed genes between two groups of
cells based on a model using DESeq2 which uses a negative binomial distri-
bution (Love et al, Genome Biology, 2014).This test does not support pre-
filtering of genes based on average difference (or percent detection rate) be-
tween cell groups. However, genes may be pre-filtered based on their min-
imum detection rate (min.pct) across both cell groups. To use this method,
please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

contrast character vector with exactly three elements: the name of a factor in the design
formula, the name of the numerator level for the fold change, and the name of
the denominator level for the fold change.

norm name of the normalization method used to compute the normalization factors to
use in the differential abundance analysis. If norm is equal to "TMM", "TMMwsp",
"RLE", "upperquartile", "posupperquartile", "CSSmedian", "CSSdefault", "TSS"
the scaling factors are automatically transformed into normalization factors.

expand logical, if TRUE create all combinations of input parameters (default expand =
TRUE)

Value

A named list containing the set of parameters for DA_Seurat method.

See Also

DA_Seurat

weights_ZINB 85

Examples

Set some basic combinations of parameters for Seurat
base_Seurat <- set_Seurat(contrast = c("group", "B", "A"))
Set a specific set of normalization for Seurat (even of other packages!)
setNorm_Seurat <- set_Seurat(contrast = c("group", "B", "A"), norm = c("TSS",
"TMM", "poscounts"))
Set many possible combinations of parameters for Seurat
all_Seurat <- set_Seurat(pseudo_count = c(TRUE, FALSE),

test.use = c("wilcox", "t", "negbinom", "poisson"),
contrast = c("group", "B", "A"), norm = c("TSS", "TMM"))

weights_ZINB weights_ZINB

Description

Computes the observational weights of the counts under a zero-inflated negative binomial (ZINB)
model. For each count, the ZINB distribution is parametrized by three parameters: the mean value
and the dispersion of the negative binomial distribution, and the probability of the zero component.

Usage

weights_ZINB(
object,
design,
K = 0,
commondispersion = TRUE,
zeroinflation = TRUE,
verbose = FALSE,
...

)

Arguments

object phyloseq object containing the counts and the sample data.

design character name of the metadata columns, formula, or design matrix with rows
corresponding to samples and columns to coefficients to be estimated (the user
needs to explicitly include the intercept in the design).

K integer. Number of latent factors.
commondispersion

Whether or not a single dispersion for all features is estimated (default TRUE).

zeroinflation Whether or not a ZINB model should be fitted. If FALSE, a negative binomial
model is fitted instead.

verbose Print helpful messages.

... Additional parameters to describe the model, see zinbModel.

86 weights_ZINB

Value

A matrix of weights.

See Also

zinbFit for zero-inflated negative binomial parameters’ estimation and computeObservationalWeights
for weights extraction.

Examples

set.seed(1)
Create a very simple phyloseq object
counts <- matrix(rnbinom(n = 60, size = 3, prob = 0.5), nrow = 10, ncol = 6)
metadata <- data.frame("Sample" = c("S1", "S2", "S3", "S4", "S5", "S6"))
ps <- phyloseq::phyloseq(phyloseq::otu_table(counts, taxa_are_rows = TRUE),

phyloseq::sample_data(metadata))
Calculate the ZINB weights
zinbweights <- weights_ZINB(object = ps, K = 0, design = "~ 1")

Index

∗ datasets
microbial_metabolism, 48
ps_plaque_16S, 68
ps_stool_16S, 68

addKnowledge, 3, 11, 31
AddMetaData, 30
aldex, 19
areaCAT, 5, 8

bbdml, 20

calcNormFactors, 49, 51, 52
checkNormalization, 6
computeObservationalWeights, 86
createColors, 7
createConcordance, 5, 8, 54
createEnrichment, 4, 9, 31, 55, 57, 62
createMocks, 12, 17, 71
createPositives, 12, 43, 64
CreateSeuratObject, 30
createSplits, 15, 73
createTIEC, 16, 58, 59

DA_ALDEx2, 17, 75
DA_corncob, 19, 77
DA_DESeq2, 21, 78
DA_edgeR, 22, 79
DA_limma, 24, 80
DA_MAST, 25, 82
DA_metagenomeSeq, 27, 83
DA_Seurat, 28, 84
DESeq, 22
DGEList, 23
differentialTest, 20

enrichmentTest, 11, 30
estimateDisp, 23
estimateGLMRobustDisp, 23
estimateSizeFactors, 49, 50
extractDA, 11, 31, 32, 42

extractStatistics, 8, 33, 34, 45

FindMarkers, 30
FindVariableFeatures, 30
fitDM, 36, 38, 47
fitHURDLE, 36, 38, 47, 67
fitModels, 37, 61, 66
fitNB, 38, 38, 47
fitZIG, 38, 39, 47
fitZig, 28, 39
fitZINB, 38, 40, 47
formula, 21, 77

getDA, 33, 41
getPositives, 14, 43, 64
getStatistics, 35, 42, 45
glmFit, 39
glmQLFit, 23
glmQLFTest, 23

iterative_ordering, 46

lmFit, 25

meanDifferences, 38, 47, 67, 69
MGLMreg, 36
microbial_metabolism, 48
MRfulltable, 28

norm_CSS, 7, 48, 74
norm_DESeq2, 7, 49, 74
norm_edgeR, 6, 7, 51, 74
norm_TSS, 7, 52, 74
NormalizeData, 30

pbLRT, 20, 76
pbWald, 20, 76
phyloseq_to_deseq2, 22
plotConcordance, 5, 53
plotContingency, 55, 57, 62
plotEnrichment, 55, 56, 62

87

88 INDEX

plotFPR, 58
plotKS, 59
plotMD, 60, 66
plotMutualFindings, 47, 55, 57, 61
plotPositives, 14, 63
plotQQ, 65
plotRMSE, 61, 66
prepareObserved, 38, 47, 48, 67, 69
ps_plaque_16S, 68
ps_stool_16S, 68

relevel, 21, 78
results, 22
RMSE, 61, 66, 69
runDA, 69
runMocks, 70
runNormalizations, 49, 50, 52, 53, 71, 74
runSplits, 72

ScaleData, 30
set_ALDEx2, 74
set_corncob, 76
set_DESeq2, 77
set_edgeR, 78
set_limma, 80
set_MAST, 81
set_metagenomeSeq, 82
set_Seurat, 83
setNormalizations, 7, 49, 50, 52, 53, 72, 73,

73

voom, 25

weights_ZINB, 85

zinbFit, 40, 86
zinbModel, 85
zlm, 26, 36

	addKnowledge
	areaCAT
	checkNormalization
	createColors
	createConcordance
	createEnrichment
	createMocks
	createPositives
	createSplits
	createTIEC
	DA_ALDEx2
	DA_corncob
	DA_DESeq2
	DA_edgeR
	DA_limma
	DA_MAST
	DA_metagenomeSeq
	DA_Seurat
	enrichmentTest
	extractDA
	extractStatistics
	fitDM
	fitHURDLE
	fitModels
	fitNB
	fitZIG
	fitZINB
	getDA
	getPositives
	getStatistics
	iterative_ordering
	meanDifferences
	microbial_metabolism
	norm_CSS
	norm_DESeq2
	norm_edgeR
	norm_TSS
	plotConcordance
	plotContingency
	plotEnrichment
	plotFPR
	plotKS
	plotMD
	plotMutualFindings
	plotPositives
	plotQQ
	plotRMSE
	prepareObserved
	ps_plaque_16S
	ps_stool_16S
	RMSE
	runDA
	runMocks
	runNormalizations
	runSplits
	setNormalizations
	set_ALDEx2
	set_corncob
	set_DESeq2
	set_edgeR
	set_limma
	set_MAST
	set_metagenomeSeq
	set_Seurat
	weights_ZINB
	Index

