find_markers {iasva} | R Documentation |
Function takes a read counts matrix of entire gene set and a matrix of surrogate variables estimated by IA-SVA as input, identifies marker genes highly correlated with each surrogate variable and returns a read counts matrix of the markers.
find_markers(Y, iasva.sv, method = "BH", sig.cutoff = 0.05, rsq.cutoff = 0.3, verbose = FALSE)
Y |
A SummarizedExperiment class containing read counts where rows represent genes and columns represent samples. |
iasva.sv |
matrix of estimated surrogate variables, one column for each surrogate variable. |
method |
multiple testing adjustment method, default = "BH". |
sig.cutoff |
significance cutoff. |
rsq.cutoff |
R squared cutoff. |
verbose |
If verbose = TRUE, the function outputs detailed messages. |
marker.counts read counts matrix of markers, one column for each cell.
counts_file <- system.file("extdata", "iasva_counts_test.Rds", package = "iasva") counts <- readRDS(counts_file) anns_file <- system.file("extdata", "iasva_anns_test.Rds", package = "iasva") anns <- readRDS(anns_file) Geo_Lib_Size <- colSums(log(counts + 1)) Patient_ID <- anns$Patient_ID mod <- model.matrix(~Patient_ID + Geo_Lib_Size) summ_exp <- SummarizedExperiment::SummarizedExperiment(assays = counts) iasva.res <- iasva(summ_exp, mod[, -1], num.sv = 5, permute = FALSE) markers <- find_markers(summ_exp, iasva.res$sv)