tmixFilter-class {flowClust} | R Documentation |
The tmixFilter
function creates a filter object which is then passed
to the filter
method that performs filtering on a flowFrame
object. This method pair is provided to let flowClust integrate with
the flowCore package.
tmixFilter(filterId = "tmixFilter", parameters = "", ...) ## S4 method for signature 'ANY,flowClust' x %in% table ## S4 method for signature 'flowFrame,tmixFilterResult' x %in% table ## S4 method for signature 'flowFrame,tmixFilter' x %in% table ## S4 method for signature 'ANY,tmixFilterResult' x %in% table ## S4 method for signature 'ANY,flowClustList' x %in% table ## S4 method for signature 'ANY,tmixFilterResultList' x %in% table ## S4 method for signature 'flowFrame,flowClust' x[i, j, ..., drop = FALSE] ## S4 method for signature 'flowFrame,tmixFilterResult' x[i, j, ..., drop = FALSE] ## S4 method for signature 'flowFrame,flowClustList' x[i, j, ..., drop = FALSE] ## S4 method for signature 'flowFrame,tmixFilterResultList' x[i, j, ..., drop = FALSE] ## S4 method for signature 'tmixFilterResultList,ANY' x[[i, j, ..., exact = TRUE]] ## S4 method for signature 'tmixFilterResultList' length(x) ## S4 method for signature 'tmixFilterResult,tmixFilter' summarizeFilter(result, filter)
filterId |
A character string that identifies the filter created. |
parameters |
A character vector specifying the variables to be used in
filtering. When it is left unspecified, all the variables of the
|
... |
Other arguments passed to the The The The If If |
x |
flowFrame |
table |
tmixFilterResult |
i |
tmixFilterResult or tmixFilterResultList |
j, drop, exact |
not used |
result |
tmixFilterResult |
filter |
tmixFilter |
Lo, K., Brinkman, R. R. and Gottardo, R. (2008) Automated Gating of Flow Cytometry Data via Robust Model-based Clustering. Cytometry A 73, 321-332.
flowClust
,
summary
,
plot
,
density
,
hist
, Subset
,
split
, ruleOutliers
, Map
### The example below largely resembles the one in the flowClust ### man page. The main purpose here is to demonstrate how the ### entire cluster analysis can be done in a fashion highly ### integrated into flowCore. data(rituximab) library(flowCore) ### create a filter object s1filter <- tmixFilter("s1", c("FSC.H", "SSC.H"), K=1) ### cluster the data using FSC.H and SSC.H res1 <- filter(rituximab, s1filter) ### remove outliers before proceeding to the second stage # %in% operator returns a logical vector indicating whether each # of the observations lies inside the gate or not rituximab2 <- rituximab[rituximab %in% res1,] # a shorthand for the above line rituximab2 <- rituximab[res1,] # this can also be done using the Subset method rituximab2 <- Subset(rituximab, res1) ### cluster the data using FL1.H and FL3.H (with 3 clusters) s2filter <- tmixFilter("s2", c("FL1.H", "FL3.H"), K=3) res2 <- filter(rituximab2, s2filter) show(s2filter) show(res2) summary(res2) # to demonstrate the use of the split method split(rituximab2, res2) split(rituximab2, res2, population=list(sc1=c(1,2), sc2=3)) # to show the cluster assignment of observations table(Map(res2)) # to show the cluster centres (i.e., the mean parameter estimates # transformed back to the original scale) and proportions getEstimates(res2) ### demonstrate the use of various plotting methods # a scatterplot plot(rituximab2, res2, level=0.8) plot(rituximab2, res2, level=0.8, include=c(1,2), grayscale=TRUE, pch.outliers=2) # a contour / image plot res2.den <- density(res2, data=rituximab2) plot(res2.den) plot(res2.den, scale="sqrt", drawlabels=FALSE) plot(res2.den, type="image", nlevels=100) plot(density(res2, include=c(1,2), from=c(0,0), to=c(400,600))) # a histogram (1-D density) plot plot(rituximab2, res2, "FL1.H") ### to demonstrate the use of the ruleOutliers method summary(res2) # change the rule to call outliers ruleOutliers(res2) <- list(level=0.95) # augmented cluster boundaries lead to fewer outliers summary(res2) # the following line illustrates how to select a subset of data # to perform cluster analysis through the min and max arguments; # also note the use of level to specify a rule to call outliers # other than the default s2t <- tmixFilter("s2t", c("FL1.H", "FL3.H"), K=3, B=100, min=c(0,0), max=c(400,800), level=0.95, z.cutoff=0.5) filter(rituximab2, s2t)