plot,biosignMultiDataSet,ANY-method {biosigner} | R Documentation |
This function plots signatures obtained by biosign
.
Displays classifier tiers or individual boxplots from selected features
## S4 method for signature 'biosignMultiDataSet,ANY' plot( x, y, fig.pdfC = c("none", "interactive", "myfile.pdf")[2], info.txtC = c("none", "interactive", "myfile.txt")[2], ... ) ## S4 method for signature 'biosign,ANY' plot( x, y, tierMaxC = "S", typeC = c("tier", "boxplot")[1], plotSubC = NA, fig.pdfC = c("none", "interactive", "myfile.pdf")[2], info.txtC = c("none", "interactive", "myfile.txt")[2], file.pdfC = NULL, .sinkC = NULL, ... )
x |
An S4 object of class |
y |
Currently not used. |
fig.pdfC |
Character: File name with '.pdf' extension for the figure; if 'interactive' (default), figures will be displayed interactively; if 'none', no figure will be generated |
info.txtC |
Character: File name with '.txt' extension for the printed results (call to sink()'); if 'interactive' (default), messages will be printed on the screen; if 'none', no verbose will be generated |
... |
Currently not used. |
tierMaxC |
Character: Maximum level of tiers to display: Either 'S' and 'A', (for boxplot), or also 'B', 'C', 'D', and 'E' (for tiers) by decreasing number of selections |
typeC |
Character: Plot type; either 'tier' [default] displaying the comparison of signatures up to the selected 'tierMaxC' or 'boxplot' showing the individual boxplots of the features selected by all the classifiers |
plotSubC |
Character: Graphic subtitle |
file.pdfC |
Character: deprecated; use the 'fig.pdfC' argument instead |
.sinkC |
Character: deprecated; use the 'info.txtC' argument instead |
A plot is created on the current graphics device.
Philippe Rinaudo and Etienne Thevenot (CEA)
# Loading the 'NCI60_4arrays' from the 'omicade4' package data("NCI60_4arrays", package = "omicade4") # Selecting two of the four datasets setNamesVc <- c("agilent", "hgu95") # Creating the MultiDataSet instance nciMset <- MultiDataSet::createMultiDataSet() # Adding the two datasets as ExpressionSet instances for (setC in setNamesVc) { # Getting the data exprMN <- as.matrix(NCI60_4arrays[[setC]]) pdataDF <- data.frame(row.names = colnames(exprMN), cancer = substr(colnames(exprMN), 1, 2), stringsAsFactors = FALSE) fdataDF <- data.frame(row.names = rownames(exprMN), name = rownames(exprMN), stringsAsFactors = FALSE) # Building the ExpressionSet eset <- Biobase::ExpressionSet(assayData = exprMN, phenoData = new("AnnotatedDataFrame", data = pdataDF), featureData = new("AnnotatedDataFrame", data = fdataDF), experimentData = new("MIAME", title = setC)) # Adding to the MultiDataSet nciMset <- MultiDataSet::add_eset(nciMset, eset, dataset.type = setC, GRanges = NA, warnings = FALSE) } # Restricting to the 'ME' and 'LE' cancer types sampleNamesVc <- Biobase::sampleNames(nciMset[["agilent"]]) cancerTypeVc <- Biobase::pData(nciMset[["agilent"]])[, "cancer"] nciMset <- nciMset[sampleNamesVc[cancerTypeVc %in% c("ME", "LE")], ] # Summary of the MultiDataSet nciMset # Selecting the significant features for PLS-DA, RF, and SVM classifiers, and getting back the updated MultiDataSet nciBiosign <- biosigner::biosign(nciMset, "cancer") # Plotting the selected signatures plot(nciBiosign) ## loading the diaplasma dataset data(diaplasma) attach(diaplasma) ## restricting to a smaller dataset for this example featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500 dataMatrix <- dataMatrix[, featureSelVl] variableMetadata <- variableMetadata[featureSelVl, ] ## signature selection for all 3 classifiers ## a bootI = 5 number of bootstraps is used for this example ## we recommend to keep the default bootI = 50 value for your analyzes set.seed(123) diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5) ## individual boxplot of the selected signatures plot(diaSign, typeC = "boxplot") detach(diaplasma)