SCFA.class {SCFA} | R Documentation |
Perform risk score prediction on input data. This function requires training data with survival information. The output is the risk scores of patients in testing set.
SCFA.class(dataListTrain, trainLabel, dataListTest, ncores = 10L, seed = NULL)
dataListTrain |
List of training data matrices. In each matrix, rows represent samples and columns represent genes/features. |
trainLabel |
Survival information of patient in training set in form of Surv object. |
dataListTest |
List of testing data matrices. In each matrix, rows represent samples and columns represent genes/features. |
ncores |
Number of processor cores to use. |
seed |
Seed for reproducibility, you still need to use set.seed function for full reproducibility. |
A vector of risk score predictions for patient in test set.
#Load example data (GBM dataset) data("GBM") #List of one matrix (microRNA data) dataList <- GBM$data #Survival information survival <- GBM$survival library(survival) #Split data to train and test set.seed(1) idx <- sample.int(nrow(dataList[[1]]), round(nrow(dataList[[1]])/2) ) survival$Survival <- survival$Survival - min(survival$Survival) + 1 # Survival time must be positive trainList <- lapply(dataList, function(x) x[idx, ] ) trainSurvival <- Surv(time = survival[idx,]$Survival, event = survival[idx,]$Death) testList <- lapply(dataList, function(x) x[-idx, ] ) testSurvival <- Surv(time = survival[-idx,]$Survival, event = survival[-idx,]$Death) #Perform risk prediction result <- SCFA.class(trainList, trainSurvival, testList, seed = 1, ncores = 2L) #Validation using concordance index c.index <- concordance(coxph(testSurvival ~ result))$concordance print(c.index)