complex_filter {FastqCleaner}R Documentation

Remove sequences with low complexity

Description

The program removes low complexity sequences, computing the entropy with the observed frequency of dinucleotides.

Usage

complex_filter(input, threshold = 0.5, referenceEntropy = 3.908135)

Arguments

input

ShortReadQ object

threshold

A threshold value computed as the relation of the H of the sequences and the reference H. Default is 0.5

referenceEntropy

Reference entropy. By default, the program uses a value of 3.908, that corresponds to the entropy of the human genome in bits

Value

Filtered ShortReadQ object

Author(s)

Leandro Roser learoser@gmail.com

Examples


require('Biostrings')
require('ShortRead')

# create  sequences of different width
set.seed(10)
input <- lapply(c(0, 6, 10, 16, 20, 26, 30, 36, 40), 
               function(x) random_seq(1, x))


# create repetitive 'CG' sequences with length adequante 
# for a total length:
# input +  CG = 40

set.seed(10)
CG <- lapply(c(20, 17, 15, 12, 10, 7, 5, 2, 0), 
            function(x) paste(rep('CG', x), collapse = ''))


# concatenate input and CG
input  <- mapply('paste', input, CG, sep = '')
input <- DNAStringSet(input)

# plot relative entropy (E, Shannon 1948)

freq <- dinucleotideFrequency(input)
freq  <- freq /rowSums(freq)
H <- -rowSums(freq  * log2(freq), na.rm = TRUE)
H_max <- 3.908135  # max entropy
plot(H/H_max, type='b', xlab = 'Sequence', ylab= 'E')


# create qualities of width 40

set.seed(10)
input_q <- random_qual(c(30,40), slength = 9, swidth = 40, 
                       encod = 'Sanger')

# create names
input_names <- seq_names(9)

# create ShortReadQ object
my_read <- ShortReadQ(sread = input, quality = input_q, id = input_names)

# apply the filter
filtered <- complex_filter(my_read)

# look at the filtered sequences
sread(filtered)


[Package FastqCleaner version 1.11.0 Index]