AUCell_plotTSNE {AUCell} | R Documentation |
Plots the AUC histogram and t-SNE coloured by AUC, binary activity and TF expression
AUCell_plotTSNE( tSNE, exprMat = NULL, cellsAUC = NULL, thresholds = NULL, reorderGeneSets = FALSE, cex = 1, alphaOn = 1, alphaOff = 0.2, borderColor = adjustcolor("lightgray", alpha.f = 0.1), offColor = "lightgray", plots = c("histogram", "binaryAUC", "AUC", "expression"), exprCols = c("goldenrod1", "darkorange", "brown"), asPNG = FALSE, ... )
tSNE |
t-SNE coordinates (e.g. |
exprMat |
Expression matrix |
cellsAUC |
AUC (as returned by calcAUC) |
thresholds |
Thresholds returned by AUCell |
reorderGeneSets |
Whether to reorder the gene sets based on AUC similarity |
cex |
Scaling factor for the dots in the scatterplot |
alphaOn |
Transparency for the dots representing "active" cells |
alphaOff |
Transparency for the dots representing "inactive" cells |
borderColor |
Border color for the dots (scatterplot) |
offColor |
Color for the dots representing "inactive" cells |
plots |
Which plots to generate? Select one or multiple: |
exprCols |
Color scale for the expression |
asPNG |
Output each individual plot in a .png file? (can also be a directory) |
... |
Other arguments to pass to |
To avoid calculating thresholds, set thresholds to FALSE
Returns invisible: cells_trhAssignment
List of vignettes included in the package: vignette(package="AUCell")
###### # Fake run of AUCell set.seed(123) exprMatrix <- matrix( data=sample(c(rep(0, 5000), sample(1:3, 5000, replace=TRUE))), nrow=20, dimnames=list(paste("Gene", 1:20, sep=""), paste("Cell", 1:500, sep=""))) geneSets <- list(geneSet1=sample(rownames(exprMatrix), 10), geneSet2=sample(rownames(exprMatrix), 5)) cells_rankings <- AUCell_buildRankings(exprMatrix, plotStats = FALSE) cells_AUC <- AUCell_calcAUC(geneSets, cells_rankings, aucMaxRank=5, nCores=1) selectedThresholds <- rowMeans(getAUC(cells_AUC)) cellsTsne<- Rtsne::Rtsne(t(exprMatrix),max_iter = 10)$Y # cellsTsne<- tsne::tsne(t(exprMatrix),max_iter = 10) rownames(cellsTsne) <- colnames(exprMatrix) ###### par(mfrow=c(2,3)) thrs <- AUCell_plotTSNE(tSNE=cellsTsne, exprMat=NULL, cellsAUC=cells_AUC, thresholds=selectedThresholds, plots = c("histogram", "binaryAUC", "AUC")) ##### # Color based on the known phenodata: cellInfo <- data.frame(cellType1=sample(LETTERS[1:3],ncol(exprMatrix), replace=TRUE), cellType2=sample(letters[5:7],ncol(exprMatrix), replace=TRUE), nGenes=abs(rnorm(ncol(exprMatrix))), row.names=colnames(exprMatrix)) colVars <- list(cellType2=setNames(c("skyblue","magenta", "darkorange"),letters[5:7])) # dev.off() plotTsne_cellProps(cellsTsne, cellInfo, colVars=colVars)