moduleIdentificationGPFixSSMultilayer {AMOUNTAIN} | R Documentation |
Algorithm for Module Identification on multi-layer network sharing the same set of genes
moduleIdentificationGPFixSSMultilayer(W, listz, x0, a = 0.5, lambda = 1, maxiter = 1000)
W |
edge score matrix of the network, n x n matrix |
listz |
a list of node score vectors, each layer has a n-length vector |
x0 |
initial solution, n-length vector |
a |
parameter in elastic net the same as in |
lambda |
parameter in objective, coefficient of node score of other layers |
maxiter |
maximal interation of whole procedure |
a list containing objective values and solution
Dong Li, dxl466@cs.bham.ac.uk
AMOUNTAIN
moduleIdentificationGPFixSSMultilayer
n = 100 k = 20 L = 5 theta = 0.5 cpl <- multilayernetworkSimulation(n,k,theta,L) listz <- list() for (i in 1:L){ listz[[i]] <- cpl[[i+2]] } moduleid <- cpl[[2]] ## use default parameters here x <- moduleIdentificationGPFixSSMultilayer(cpl[[1]],listz,rep(1/n,n)) predictedid <- which(x[[2]]!=0) recall <- length(intersect(predictedid,moduleid))/length(moduleid) precise <- length(intersect(predictedid,moduleid))/length(predictedid) Fscore <- (2*precise*recall/(precise+recall))