Protein Interactions and Networks with Compounds based on Sequences using Deep Learning


[Up] [Top]

Documentation for package ‘DeepPINCS’ version 1.2.2

Help Pages

antiviral_drug List of antiviral drugs with SMILES strings
cnn_in_out Input and output tensors of encoders
example_bioassay Example Data for PubChem AID1706 bioassay
example_cci Example Data for Chemical-Chemical Interactions
example_chem Example Data for Compounds
example_cpi Example Data for Compound-Protein Interactions
example_pd Example Data for Primer-Dimer
example_ppi Example Data for Protein-Protein Interactions
example_prot Example Data for Proteins
fit_cpi Deep learning model fitting and prediction for compound-protein interactions
gcn_in_out Input and output tensors of encoders
get_canonical_smiles Convert SMILES strings to canonical SMILES strings
get_fingerprint Molecular fingerprint of compounds from SMILES strings
get_graph_structure_node_feature Graph structure and node features from SMILES strings
get_seq_encode_pad Vectorization of characters of strings
metric_concordance_index Concordance index
metric_f1_score F1-score
mlp_in_out Input and output tensors of encoders
multiple_sampling_generator Generator function for multiple inputs
predict_cpi Deep learning model fitting and prediction for compound-protein interactions
rnn_in_out Input and output tensors of encoders
SARS_CoV2_3CL_Protease Amino Acid Sequence for the SARS coronavirus 3C-like Protease
seq_check Check SMILES strings and amino acid sequences
seq_preprocessing Preprocessing for SMILES strings and amino acid sequences