In this vignette, we demonstrate the unsegmented block bootstrap functionality implemented in nullranges. “Unsegmented” refers to the fact that this implementation does not consider segmentation of the genome for sampling of blocks, see the segmented block bootstrap vignette for the alternative implementation.

Timing on DHS peaks

First we use the DNase hypersensitivity peaks in A549 downloaded from AnnotationHub, and pre-processed as described in the nullrangesOldData package.

library(nullrangesData)
dhs <- DHSA549Hg38()
## see ?nullrangesData and browseVignettes('nullrangesData') for documentation
## loading from cache
library(nullranges)

The following chunk of code evaluates various types of bootstrap/permutation schemes, first within chromosome, and then across chromosome (the default). The default type is bootstrap, and the default for withinChrom is FALSE (bootstrapping with blocks moving across chromosomes).

set.seed(5) # reproducibility
library(microbenchmark)
blockLength <- 5e5
microbenchmark(
  list=alist(
    p_within=bootRanges(dhs, blockLength=blockLength,
                        type="permute", withinChrom=TRUE),
    b_within=bootRanges(dhs, blockLength=blockLength,
                        type="bootstrap", withinChrom=TRUE),
    p_across=bootRanges(dhs, blockLength=blockLength,
                        type="permute", withinChrom=FALSE),
    b_across=bootRanges(dhs, blockLength=blockLength,
                        type="bootstrap", withinChrom=FALSE)
  ), times=10)
## Unit: milliseconds
##      expr       min        lq      mean    median        uq       max neval cld
##  p_within 1924.7292 2114.1387 3232.5426 3461.7118 4292.8154 4323.8642    10   b
##  b_within 1496.6154 1802.3284 2616.8213 2425.7709 3614.1810 3837.6499    10   b
##  p_across  323.7575  355.0375  480.9807  391.9079  505.4548  989.2774    10  a 
##  b_across  424.1389  501.6898  599.5443  636.7258  672.4426  777.1074    10  a

Visualize on synthetic data

We create some synthetic ranges in order to visualize the different options of the unsegmented bootstrap implemented in nullranges.

library(GenomicRanges)
seq_nms <- rep(c("chr1","chr2","chr3"),c(4,5,2))
gr <- GRanges(seqnames=seq_nms,
              IRanges(start=c(1,101,121,201,
                              101,201,216,231,401,
                              1,101),
                      width=c(20, 5, 5, 30,
                              20, 5, 5, 5, 30,
                              80, 40)),
              seqlengths=c(chr1=300,chr2=450,chr3=200),
              chr=factor(seq_nms))

The following function uses functionality from plotgardener to plot the ranges. Note in the plotting helper function that chr will be used to color ranges by chromosome of origin.

suppressPackageStartupMessages(library(plotgardener))
plotGRanges <- function(gr) {
  pageCreate(width = 5, height = 2, xgrid = 0,
                ygrid = 0, showGuides = FALSE)
  for (i in seq_along(seqlevels(gr))) {
    chrom <- seqlevels(gr)[i]
    chromend <- seqlengths(gr)[[chrom]]
    suppressMessages({
      p <- pgParams(chromstart = 0, chromend = chromend,
                    x = 0.5, width = 4*chromend/500, height = 0.5,
                    at = seq(0, chromend, 50),
                    fill = colorby("chr", palette=palette.colors))
      prngs <- plotRanges(data = gr, params = p,
                          chrom = chrom,
                          y = 0.25 + (i-1)*.7,
                          just = c("left", "bottom"))
      annoGenomeLabel(plot = prngs, params = p, y = 0.30 + (i-1)*.7)
    })
  }
}
plotGRanges(gr)

Within chromosome

Visualizing two permutations of blocks within chromosome:

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=100, type="permute", withinChrom=TRUE)
  plotGRanges(gr_prime)
}

Visualizing two bootstraps within chromosome:

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=100, withinChrom=TRUE)
  plotGRanges(gr_prime)
}

Across chromosome

Visualizing two permutations of blocks across chromosome. Here we use larger blocks than previously.

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=200, type="permute", withinChrom=FALSE)
  plotGRanges(gr_prime)
}

Visualizing two bootstraps across chromosome:

for (i in 1:2) {
  gr_prime <- bootRanges(gr, blockLength=200, withinChrom=FALSE)
  plotGRanges(gr_prime)
}

Session information

sessionInfo()
## R version 4.1.1 Patched (2021-08-22 r80813)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Mojave 10.14.6
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] grid      stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] microbenchmark_1.4-7        excluderanges_0.99.6       
##  [3] EnsDb.Hsapiens.v86_2.99.0   ensembldb_2.18.0           
##  [5] AnnotationFilter_1.18.0     GenomicFeatures_1.46.0     
##  [7] AnnotationDbi_1.56.0        patchwork_1.1.1            
##  [9] plyranges_1.14.0            nullrangesData_0.99.2      
## [11] ExperimentHub_2.2.0         AnnotationHub_3.2.0        
## [13] BiocFileCache_2.2.0         dbplyr_2.1.1               
## [15] ggplot2_3.3.5               plotgardener_1.0.0         
## [17] nullranges_1.0.0            InteractionSet_1.22.0      
## [19] SummarizedExperiment_1.24.0 Biobase_2.54.0             
## [21] MatrixGenerics_1.6.0        matrixStats_0.61.0         
## [23] GenomicRanges_1.46.0        GenomeInfoDb_1.30.0        
## [25] IRanges_2.28.0              S4Vectors_0.32.0           
## [27] BiocGenerics_0.40.0        
## 
## loaded via a namespace (and not attached):
##   [1] plyr_1.8.6                    RcppHMM_1.2.2                
##   [3] lazyeval_0.2.2                splines_4.1.1                
##   [5] BiocParallel_1.28.0           TH.data_1.1-0                
##   [7] digest_0.6.28                 yulab.utils_0.0.4            
##   [9] htmltools_0.5.2               fansi_0.5.0                  
##  [11] magrittr_2.0.1                memoise_2.0.0                
##  [13] ks_1.13.2                     Biostrings_2.62.0            
##  [15] sandwich_3.0-1                prettyunits_1.1.1            
##  [17] colorspace_2.0-2              blob_1.2.2                   
##  [19] rappdirs_0.3.3                xfun_0.27                    
##  [21] dplyr_1.0.7                   crayon_1.4.1                 
##  [23] RCurl_1.98-1.5                jsonlite_1.7.2               
##  [25] survival_3.2-13               zoo_1.8-9                    
##  [27] glue_1.4.2                    gtable_0.3.0                 
##  [29] zlibbioc_1.40.0               XVector_0.34.0               
##  [31] strawr_0.0.9                  DelayedArray_0.20.0          
##  [33] scales_1.1.1                  mvtnorm_1.1-3                
##  [35] DBI_1.1.1                     Rcpp_1.0.7                   
##  [37] xtable_1.8-4                  progress_1.2.2               
##  [39] gridGraphics_0.5-1            bit_4.0.4                    
##  [41] mclust_5.4.7                  httr_1.4.2                   
##  [43] RColorBrewer_1.1-2            speedglm_0.3-3               
##  [45] ellipsis_0.3.2                pkgconfig_2.0.3              
##  [47] XML_3.99-0.8                  farver_2.1.0                 
##  [49] sass_0.4.0                    utf8_1.2.2                   
##  [51] DNAcopy_1.68.0                ggplotify_0.1.0              
##  [53] tidyselect_1.1.1              labeling_0.4.2               
##  [55] rlang_0.4.12                  later_1.3.0                  
##  [57] munsell_0.5.0                 BiocVersion_3.14.0           
##  [59] tools_4.1.1                   cachem_1.0.6                 
##  [61] generics_0.1.1                RSQLite_2.2.8                
##  [63] ggridges_0.5.3                evaluate_0.14                
##  [65] stringr_1.4.0                 fastmap_1.1.0                
##  [67] yaml_2.2.1                    knitr_1.36                   
##  [69] bit64_4.0.5                   purrr_0.3.4                  
##  [71] KEGGREST_1.34.0               mime_0.12                    
##  [73] pracma_2.3.3                  xml2_1.3.2                   
##  [75] biomaRt_2.50.0                compiler_4.1.1               
##  [77] filelock_1.0.2                curl_4.3.2                   
##  [79] png_0.1-7                     interactiveDisplayBase_1.32.0
##  [81] tibble_3.1.5                  bslib_0.3.1                  
##  [83] stringi_1.7.5                 highr_0.9                    
##  [85] lattice_0.20-45               ProtGenerics_1.26.0          
##  [87] Matrix_1.3-4                  vctrs_0.3.8                  
##  [89] pillar_1.6.4                  lifecycle_1.0.1              
##  [91] BiocManager_1.30.16           jquerylib_0.1.4              
##  [93] data.table_1.14.2             bitops_1.0-7                 
##  [95] httpuv_1.6.3                  rtracklayer_1.54.0           
##  [97] R6_2.5.1                      BiocIO_1.4.0                 
##  [99] promises_1.2.0.1              KernSmooth_2.23-20           
## [101] codetools_0.2-18              MASS_7.3-54                  
## [103] assertthat_0.2.1              rjson_0.2.20                 
## [105] withr_2.4.2                   GenomicAlignments_1.30.0     
## [107] Rsamtools_2.10.0              multcomp_1.4-17              
## [109] GenomeInfoDbData_1.2.7        parallel_4.1.1               
## [111] hms_1.1.1                     rmarkdown_2.11               
## [113] shiny_1.7.1                   restfulr_0.0.13