Compositional omics model based visual integration


[Up] [Top]

Documentation for package ‘combi’ version 1.5.0

Help Pages

addLink Add a link on a compositional plot
arrayMult Array multiplication
buildCentMat A function to build a centering matrix based on a dataframe
buildCompMat Build the composition matrix for a certain dimension m dimensions
buildConfMat Build confounder design matrices with and without intercepts
buildCovMat A function to build the covariate matrix of the constraints
buildEmptyJac Prepare an empty Jacobian matrix, with useful entries prefilled. In case of distribution "gaussian", it returns the lhs matrix of the linear system for finding the feature paramters
buildMarginalOffset Build an offset matrix from an marginal model object
buildMu A function to build the mu matrix
buildMuMargins Build the marginal mu matrix
buildOffsetModel Build a marginal offset matrix given a model
checkAlias Check for alias structures in a dataframe, and throw an error when one is found
checkMeanVarTrend Quickly check if the mean variance trend provides a good fit
checkMonotonicity Check for monotonicity in compositional datasets fro given dimensions
combi Perform model-based data integration
convPlot Plot the convegrence of the different parameter estimates in a line plot
deriv2LagrangianFeatures The score function to estimate the latent variables
deriv2LagrangianLatentVars The jacobian function to estimate the latent variables
deriv2LagrangianLatentVarsConstr The score function to estimate the latent variables
derivLagrangianFeatures The score function to estimate the feature parameters
derivLagrangianLatentVars The score function to estimate the latent variables
derivLagrangianLatentVarsConstr The score function to estimate the latent variables
estFeatureParameters Estimate the feature parameters
estIndepModel Estimate the independence model belonging to one view
estLatentVars Estimate the latent variables
estMeanVarTrend Estimate a column-wise mean-variance trend
estOff Estimate the row/column parameters of the independence model
extractCoords Extract coordinates from fitted object
extractData Helper function to extract data matrix from phyloseq, expressionset objects etc. Also filers out all zero rows
extractMat A function to extract a data matrix from a number of objects
extractMat-method A function to extract a data matrix from a number of objects
filterConfounders Filter out the effect of known confounders
getInflLatentVar Extract the influence on the estimation of the latent variable
gramSchmidtOrth Gram schimdt orhtogonalize a with respect to b, and normalize
indentPlot Functions to indent the plot to include the entire labels
inflPlot A ggplot line plot showing the influences
influence.combi Evaluate the influence function
jacConfounders Jacobian when estimating confounder variables
jacConfoundersComp Jacobian for conditioning under compositionality
jacFeatures Evaluate the jacobian for estimating the feature parameters for one view
jacLatentVars Evaluate the jacobian for estimating the latent variable for one view
jacLatentVarsConstr Evaluate the jacobian for estimating the latent variable for one view for constrained ordination
plot.combi Make multiplots of the data integration object
polyHorner Horner's method to evaluate a polynomial, copied from the polynom package. the most efficient way
predictSpline A custom spline prediction function, extending linearly with a slope such that prediction never drops below first bisectant
prepareJacMat prepare the jacobian matrix
prepareJacMatComp prepare the jacobian for the latent variabels compostional
prepareScoreMat Prepare a helper matrix for score function evaluation under quasi-likelihood
print.combi Print an overview of a fitted combi x
quasiJacIndep The jacobian for column offset estimation
quasiScoreIndep Quasi score equations for column offset parameters of sequence count data
rowMultiply A function to efficiently row multiply a matrix and a vector
scaleCoords A helper function to rescale coordinates
scoreConfounders Score functions for confounder variables
scoreConfoundersComp Score equations for conditioning under compositionality
scoreFeatureParams Evaluate the score functions for the estimation of the feature parameters for a single dataset
scoreLatentVars Evaluate the score functions for the estimation of the latent variables for a single dataset
seqM A small auxiliary function for the indices of the lagrange multipliers
trimOnConfounders Trim based on confounders to avoid taxa with only zero counts
zhangMetabo Metabolomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls
zhangMetavars Baseline sample variables of PAT and control mice
zhangMicrobio Microbiomes of mice that underwent Pulsed Antibiotic Treatment (PAT) and controls